RESUMEN
Hypertrophic cardiomyopathy (HCM) is a hereditary cardiac disorder marked by anomalous thickening of the myocardium, representing a significant contributor to mortality. While the involvement of immune inflammation in the development of cardiac ailments is well-documented, its specific impact on HCM pathogenesis remains uncertain. Five distinct machine learning algorithms, namely LASSO, SVM, RF, Boruta and XGBoost, were utilized to discover new biomarkers associated with HCM. A unique nomogram was developed using two newly identified biomarkers and subsequently validated. Furthermore, samples of HCM and normal heart tissues were gathered from our institution to confirm the variance in expression levels and prognostic significance of GATM and MGST1. Five novel biomarkers (DARS2, GATM, MGST1, SDSL and ARG2) associated with HCM were identified. Subsequent validation revealed that GATM and MGST1 exhibited significant diagnostic utility for HCM in both the training and test cohorts, with all AUC values exceeding 0.8. Furthermore, a novel risk assessment model for HCM patients based on the expression levels of GATM and MGST1 demonstrated favourable performance in both the training (AUC = 0.88) and test cohorts (AUC = 0.9). Furthermore, our study revealed that GATM and MGST1 exhibited elevated expression levels in HCM tissues, demonstrating strong discriminatory ability between HCM and normal cardiac tissues (AUC of GATM = 0.79; MGST1 = 0.86). Our findings suggest that two specific cell types, monocytes and multipotent progenitors (MPP), may play crucial roles in the pathogenesis of HCM. Notably, GATM and MGST1 were found to be highly expressed in various tumours and showed significant prognostic implications. Functionally, GATM and MGST1 are likely involved in xenobiotic metabolism and epithelial mesenchymal transition in a wide range of cancer types. GATM and MGST1 have been identified as novel biomarkers implicated in the progression of both HCM and cancer. Additionally, monocytes and MPP may also play a role in facilitating the progression of HCM.
Asunto(s)
Biomarcadores , Cardiomiopatía Hipertrófica , Aprendizaje Automático , Neoplasias , Humanos , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/genética , Neoplasias/metabolismo , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patología , Biomarcadores/metabolismo , Masculino , Femenino , Pronóstico , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Persona de Mediana Edad , NomogramasRESUMEN
Background: Macrophages play a crucial role in the progression of AF, closely linked to atrial inflammation and myocardial fibrosis. However, the functions and molecular mechanisms of different phenotypic macrophages in AF are not well understood. This study aims to analyze the infiltration characteristics of atrial immune cells in AF patients and further explore the role and molecular expression patterns of M2 macrophage-related genes in AF. Methods: This study integrates single-cell and large-scale sequencing data to analyze immune cell infiltration and molecular characterization of the LAA in patients with AF, using SR as a control group. CIBERSORT assesses immune cell types in LAA tissues; WGCNA identifies signature genes; cell clustering analyzes cell types and subpopulations; cell communication explores macrophage interactions; hdWGCNA identifies M2 macrophage gene modules in AF. AF biomarkers are identified using LASSO and Random Forest, validated with ROC curves and RT-qPCR. Potential molecular mechanisms are inferred through TF-miRNA-mRNA networks and single-gene enrichment analyses. Results: Myeloid cell subsets varied considerably between the AF and SR groups, with a significant increase in M2 macrophages in the AF group. Signals of inflammation and matrix remodeling were observed in AF. M2 macrophage-related genes IGF1, PDK4, RAB13, and TMEM176B were identified as AF biomarkers, with RAB13 and TMEM176B being novel markers. A TF-miRNA-mRNA network was constructed using target genes, which are enriched in the PPAR signaling pathway and fatty acid metabolism. Conclusion: Over infiltration of M2 macrophages may be an important factor in the progression of AF. The M2 macrophage-related genes IGF1, RAB13, TMEM176B and PDK4 may regulate the progression of AF through the PPAR signaling pathway and fatty acid metabolism.
RESUMEN
Continuous ovarian imaging has been proven to be a method for monitoring the development of follicles in vivo. The aim of this study was to evaluate the efficacy of combining ultrasound bio-microscopy (UBM) with an intravital window for follicle imaging in rabbits and to monitor the ovarian dynamic processes. New Zealand White female rabbits (n = 10) received ovarian translocation to a subcutaneous position. The ovarian tissue was sutured onto the abdominal muscles and covered with an intravital window for the continuous monitoring of the follicles using UBM. Results show that physiological changes (red blood cell and white blood cell counts, feed intake, and body weight change) in rabbits induced by surgery returned to normal physiological levels in one week. Furthermore, UBM could provide high-resolution imaging of follicles through the intravital window. Daily monitoring of ovarian dynamic processes for 6 days displayed variabilities in follicle counts and size. Collectively, these results provide a relatively new method to monitor ovarian dynamic processes and to understand the reproductive physiology of female rabbits.
RESUMEN
Intestine is responsible for nutrients absorption and plays a key role in defending against various dietary allergens, antigens, toxins, and pathogens. Accumulating evidence reported a critical role of intestine in maintaining animal and human health. Since the use of antibiotics as growth promoters in animal feed has been restricted in many countries, alternatives to antibiotics have been globally investigated, and polysaccharides are considered as environmentally friendly and promising alternatives to improve intestinal health, which has become a research hotspot due to its antibiotic substitution effect. Astragalus polysaccharide (APS), a biological macromolecule, is extracted from astragalus and has been reported to exhibit complex biological activities involved in intestinal barrier integrity maintenance, intestinal microbiota regulation, short-chain fatty acids (SCFAs) production, and immune response regulation, which are critical for intestine health. The biological activity of APS is related to its chemical structure. In this review, we outlined the source and structure of APS, highlighted recent findings on the regulation of APS on physical barrier, biochemical barrier, immunological barrier, and immune response as well as the latest progress of APS as an antibiotic substitute in animal production. We hope this review could provide scientific basis and new insights for the application of APS in nutrition, clinical medicine and health by understanding particular effects of APS on intestine health, anti-inflammation, and animal production.
RESUMEN
Background: Dysregulated macrophages are important causes of Atherosclerosis (AS) formation and increased plaque instability, but the heterogeneity of these plaques and the role of macrophage subtypes in plaque instability have yet to be clarified. Methods: This study integrates single-cell and bulk-seq data to analyze atherosclerotic plaques. Unsupervised clustering was used to reveal distinct plaque subtypes, while survival analysis and gene set variation analysis (GSVA) methods helped in understanding their clinical outcomes. Enrichment of differential expression of macrophage genes (DEMGs) score and pseudo-trajectory analysis were utilized to explore the biological functions and differentiation stages of macrophage subtypes in AS progression. Additionally, CellChat and the BayesPrism deconvolution method were used to elucidate macrophage subtype interaction and their prognostic significance at single-cell resolution. Finally, the expression of biomarkers was validated in mouse experiments. Results: Three distinct AS plaque subtypes were identified, with cluster 3 plaque subtype being particularly associated with higher immune infiltration and poorer prognosis. The DEMGs score exhibited a significant elevation in three macrophage subtypes (SPP1+/VCAN+ macrophages, IL1B+ macrophages, and FLT3LG+ macrophages), associated with cluster 3 plaque subtype and highlighted the prognostic significance of these subtypes. Activation trajectory of the macrophage subtypes is divided into three states (Pre-branch, Cell fate 1, and Cell fate 2), and Cell fate 2 (SPP1+/VCAN+ macrophages, IL1B+ macrophages, and FLT3LG+ macrophages dominant) exhibiting the highest DEMGs score, distinct interactions with other cell components, and relating to poorer prognosis of ischemic events. This study also uncovered a unique SPP1+/VCAN+ macrophage subtype, rare in quantity but significant in influencing AS progression. Machine learning algorithms identified 10 biomarkers crucial for AS diagnosis. The validation of these biomarkers was performed using Mendelian Randomization analysis and in vitro methods, supporting their relevance in AS pathology. Conclusion: Our study provides a comprehensive view of AS plaque heterogeneity and the prognostic significance of macrophage subtypes in plaque instability.
RESUMEN
OBJECTIVE: In this study, a high-throughput sequencing technology was used to screen the differentially expressed miRNA in the patients with "fast" and "slow" progression of chronic obstructive pulmonary disease (COPD). Moreover, the possible mechanism affecting the progression of COPD was preliminarily analyzed based on the target genes of candidate miRNAs. METHODS: The "fast" progressive COPD group included 6 cases, "slow" and Normal progressive COPD groups included 5 cases each, and COPD group included 3 cases. The peripheral blood samples were taken from the participants, followed by total RNA extraction and high throughput miRNA sequencing. The differentially expressed miRNAs among the progressive COPD groups were identified using bioinformatics analysis. Then, the candidate miRNAs were externally verified. In addition, the target gene of this miRNA was identified, and its effects on cell activity, cell cycle, apoptosis, and other biological phenotypes of COPD were analyzed. RESULTS: Compared to the Normal group, a total of 35, 16, and 7 differentially expressed miRNAs were identified in the "fast" progressive COPD, "slow" progressive COPD group, and COPD group, respectively. The results were further confirmed using dual-luciferase reporter assay and transfection tests with phosphoinositide- 3-kinase, regulatory subunit 2 (PIK3R2) as a target gene of miR-4433a-5p; the result showed a negative regulatory correlation between the miRNA and its target gene. The phenotype detection showed that the activation of the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signaling pathway might participate in the progression of COPD by promoting the proliferation of inflammatory A549 cells and inhibiting cellular apoptosis. CONCLUSIONS: MiR-4433a-5p can be used as a marker and potential therapeutic target for the progression of COPD. As a target gene of miR-4433a-5p, PIK3R2 can affect the progression of COPD by regulating phenotypes, such as cellular proliferation and apoptosis.
Asunto(s)
Progresión de la Enfermedad , MicroARNs , Fosfatidilinositol 3-Quinasas , Enfermedad Pulmonar Obstructiva Crónica , Enfermedad Pulmonar Obstructiva Crónica/genética , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Apoptosis , Fenotipo , Proliferación Celular , Masculino , Persona de Mediana Edad , FemeninoRESUMEN
Mammalian spermatogenesis is a highly complex multi-step biological process, and autophagy has been demonstrated to be involved in the process of spermatogenesis. Beclin-1/BECN1, a core autophagy factor, plays a critical role in many biological processes and diseases. However, its function in spermatogenesis remains largely unclear. In the present study, germ cell-specific Beclin 1 (Becn1) knockout mice were generated and were conducted to determine the role of Becn1 in spermatogenesis and fertility of mice. Results indicate that Becn1 deficiency leads to reduced sperm motility and quantity, partial failure of spermiation, actin network disruption, excessive residual cytoplasm, acrosome malformation, and aberrant mitochondrial accumulation of sperm, ultimately resulting in reduced fertility in male mice. Furthermore, inhibition of autophagy was observed in the testes of germ cell-specific Becn1 knockout mice, which may contribute to impaired spermiogenesis and reduced fertility. Collectively, our results reveal that Becn1 is essential for fertility and spermiogenesis in mice.
Asunto(s)
Infertilidad Masculina , Animales , Humanos , Masculino , Ratones , Autofagia , Beclina-1/genética , Beclina-1/metabolismo , Fertilidad/genética , Infertilidad Masculina/metabolismo , Mamíferos , Ratones Noqueados , Semen/metabolismo , Motilidad Espermática/genética , Espermatogénesis/genética , Espermatozoides/metabolismoRESUMEN
BACKGROUND: Postinfarction cardiac remodeling presents a compensatory mechanism aimed at mitigating congestive heart failure. It is distinguished by progressive dilatation and hypertrophy of the ventricular chambers, fibrotic alterations, and prolonged apoptosis of cardiomyocytes. The primary objective of this study was to assess the effects of icariin on myocardial fibrosis and ventricular remodeling in rats subjected to myocardial infarction (MI). METHODS: Male SpragueâDawley (SD) rats were subjected to randomization and subsequently divided into distinct groups: the control group, the sham group (undergoing sham operation), the MI group (experiencing ligation of the left anterior descending artery), and the icariin group. Within the icariin group, rats were further categorized into three different dose groups based on the administered icariin dosage: the MI30 group (30 mg/kg/day), the MI60 group (60 mg/kg/day), and the MI120 group (120 mg/kg/day). Cardiac function evaluation was carried out using echocardiography. Histological examinations, including hematoxylin and eosin (HE) staining, Masson staining, and immunohistochemistry studies, were conducted 90 days after the occurrence of MI. Additionally, Western blotting was employed to assess TGF-ß1, p-Smad2, and p-Smad3 levels. RESULTS: The administration of icariin revealed a noteworthy enhancement in cardiac function among rats afflicted with left anterior descending coronary artery (LAD) ligation. In comparison to the icariin groups, the MI group exhibited reduced EF and FS, along with elevated LVEDD and LVESD. Furthermore, the cardiac fibrosis levels in the MI group rats exhibited a considerable increase compared to those in the icariin group. Notably, the levels of Collagen I, Collagen III, MMP2, and MMP9 were significantly higher in the MI group than in the icariin group, with evident distinctions. Moreover, the expression levels of TGF-ß, IL-13, p-Smad2, and p-Smad3 were notably upregulated in the MI group compared to the icariin group. CONCLUSIONS: In an experimental rat model of MI, the administration of icariin resulted in the amelioration of both cardiac function and remodeling processes, operating through the intricate TGF-ß1/Smad signaling pathway.
Asunto(s)
Infarto del Miocardio , Factor de Crecimiento Transformador beta1 , Ratas , Animales , Masculino , Ratas Sprague-Dawley , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Transducción de Señal , Colágeno , Remodelación Ventricular , Miocardio/metabolismoRESUMEN
Astragalus (Astragalus mongholicus) alleviates myocardial remodeling caused by hypertension. However, the detailed molecular mechanism is unclear. This study aims to investigate the effect of Astragalus on ventricular remodeling in ovariectomized spontaneous hypertensive rats (OVX-SHR).Female SHR/NCrl rats were subjected to bilateral ovariectomy to establish the OVX-SHR model and treated with Astragalus extract by gavage. The hemodynamics and cardiac function parameters were measured. HE and Masson staining were used to detect the pathological structure of myocardial remodeling and observe the hyperplasia of myocardial collagen fibers. The immunohistochemistry tested the level of α-SMA. The expression levels of inflammatory cytokines, IκB, p65, Cleaved-Caspase3, RhoA, and ROCK1/2 were detected using Western blot. The method of qRT-PCR measured the expression of matrix metalloproteinase (MMP-2 and MMP-9).Hemodynamic and cardiac function parameters were significantly improved after a high dose of Astragalus extract and Valsartan treatment. The myocardial integrity of the model group was significantly reduced, arranged loosely, and disordered, while the expression of α-SMA was increased. However, Astragalus extract and Valsartan treatments significantly reduced the pathological damage and α-SMA. The levels of TNF-α, IL-1ß, IL-6, TGF-ß, MMP-2, and MMP-9 in the model group were increased but decreased after Astragalus extract treatment. Adding an ESR1 inhibitor attenuated the improvement effect of Astragalus extract on myocardial remodeling and restored the expression of RhoA and ROCK1/2.Astragalus extract attenuates the cardiac damage in OVX-SHR by downregulating the RhoA/ROCK pathway through ESR1.
Asunto(s)
Astragalus propinquus , Metaloproteinasa 2 de la Matriz , Ratas , Femenino , Animales , Ratas Endogámicas SHR , Metaloproteinasa 9 de la Matriz , Regulación hacia Abajo , Remodelación Ventricular , Transducción de Señal , Valsartán/farmacologíaAsunto(s)
Cardiomiopatías , Troponina I , Humanos , Troponina I/genética , Troponina I/metabolismo , Relevancia Clínica , MutaciónRESUMEN
Bovine parvovirus (BPV) is a pathogen responsible for respiratory and digestive tract symptoms in calves and abortion and stillbirth in pregnant cows. In this study, we developed a colloidal gold immunochromatographic (GICG) strip with an enhanced signal for detecting BPV according to the double-antibody sandwich principle and an enzyme-based signal amplification system to amplify the signal. This system utilizes horseradish peroxidase reacting with a substrate solution containing 3,3',5,5'-tetramethylbenzidine and dextran sulfate to obtain insoluble blue products on the test and control lines. We optimized different reaction conditions, including the amount of monoclonal antibodies (mAbs), pH of the colloidal gold solution, coating solution, blocking solution, sample pad treatment solution, antibody concentration in the control line, and antibody concentration in the detection line. The sensitivity of the signal-enhanced GICG strip showed that the minimum amount for detecting BPV was 102 TCID50, 10 times higher than that of the traditional GICG strip. The results of the specificity test showed that the signal-enhanced GICG strip had no cross-reactivity with BRV, BVDV, or BRSV. The results of the repeatability test showed that the coefficient of variation between and within batches was less than 5%, showing good repeatability. Moreover, for validation, PCR and the signal-enhanced GICG strip were used to detect 280 clinical bovine fecal samples. The concordance rate compared with PCR was 99.29%. Hence, the developed strip exhibited high sensitivity and specificity for the detection of BPV. Therefore, this strip could be a rapid, convenient, and effective method for the diagnosis of BPV infection in the field.
RESUMEN
Objective: Endoplasmic reticulum stress (ERS) is key in chronic obstructive pulmonary disease (COPD) incidence and progression. This study aims to identify potential ERS-related genes in COPD through bioinformatics analysis and clinical experiments. Methods: We first obtained a COPD-related mRNA expression dataset (GSE38974) from the Gene Expression Omnibus (GEO) database. The R software was then used to identify potential differentially expressed genes (DEGs) of COPD-related ERS (COPDERS). Subsequently, the identified DEGs were subjected to protein-protein interaction (PPI), correlation, Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Following that, qRT-PCR was used to examine the RNA expression of six ERS-related DEGs in blood samples obtained from the COPD and control groups. The genes were also subjected to microRNA analysis. Finally, a correlation analysis was performed between the DEGs and key clinical indicators. Results: Six ERS-related DEGs (five upregulated and one downregulated) were identified based on samples drawn from 23 COPD patients and nine healthy individuals enrolled in the study. Enrichment analysis revealed multiple ERS-related pathways. The qRT-PCR and mRNA microarray bioinformatics analysis results showed consistent STC2, APAF1, BAX, and PTPN1 expressions in the COPD and control groups. Additionally, hsa-miR-485-5p was identified through microRNA prediction and DEG analysis. A correlation analysis between key genes and clinical indicators in COPD patients demonstrated that STC2 was positively and negatively correlated with eosinophil count (EOS) and lymphocyte count (LYM), respectively. On the other hand, PTPN1 showed a strong correlation with pulmonary function indicators. Conclusion: Four COPDERS-related key genes (STC2, APAF1, BAX, and PTPN1) were identified through bioinformatics analysis and clinical validation, and the expressions of some genes exhibited a significant correlation with the selected clinical indicators. Furthermore, hsa-miR-485-5p was identified as a potential key target in COPDERS, but its precise mechanism remains unclear.
Asunto(s)
MicroARNs , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , Perfilación de la Expresión Génica/métodos , Proteína X Asociada a bcl-2/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Biología Computacional/métodosRESUMEN
Drug-induced QT prolongation, primarily antiarrhythmic drugs, is a common cause of torsade de pointes (TdP). Although there have been previous reports of drug-induced TdP in patients, it has not been well documented when caused by citalopram during the pacemaker battery-depletion phase. To improve delirium recognition, we report a case of citalopram-induced TdP during the pacemaker battery-depletion phase. An 84-year-old Chinese female was brought to the hospital presenting recurrent syncope. She lost consciousness and was admitted after her syncope TdP was documented. Her pacemaker was inspected and found to be operating in an extremely ineffective manner. Although she had prolonged QT interval after the pacemaker was replaced, she did not suffer another syncope attack, and ECG monitoring revealed no cardiac arrhythmia or TdP. During her admission, she was treated with citalopram for depression. Citalopram was discontinued when the QT interval shortened progressively. In this study, we described a case of citalopram-induced TdP during the depletion phase of a pacemaker battery. This case should serve as a cautionary lesson to clinicians to avoid using citalopram during the pacemaker battery-depletion phase.
Asunto(s)
Síndrome de QT Prolongado , Marcapaso Artificial , Torsades de Pointes , Anciano de 80 o más Años , Citalopram/efectos adversos , Proteínas de Unión al ADN , Electrocardiografía , Femenino , Humanos , Síndrome de QT Prolongado/complicaciones , Marcapaso Artificial/efectos adversos , Síncope/inducido químicamente , Síncope/terapia , Torsades de Pointes/inducido químicamente , Torsades de Pointes/diagnóstico , Torsades de Pointes/terapiaAsunto(s)
Antropometría , Dedos/anatomía & histología , Enfermedad Pulmonar Obstructiva Crónica/patología , Músculos Respiratorios/fisiopatología , Anciano , Progresión de la Enfermedad , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Medición de Riesgo/métodos , Factores de Riesgo , Brote de los SíntomasRESUMEN
The aim of this study was to investigated the functional changes of airway epithelial cells and mitochondria in rat models of asthenic lung and phlegm blocking combined with cough variant asthma (CVA). Sixteen Sprague-Dawley rats were randomly divided into two groups: Control and model group, with 8 rats in each group. On the basis of the CVA rat model induced and sensitized by ovalbumin and aluminum hydroxide, the rat models with asthenic lung and phlegm blocking combined with CVA were established via smoking stimulation. The rats in the control group were injected with equivalent normal saline. All rats were sacrificed after the model was successfully prepared. The lung histopathological sections of the two groups of rats were observed, and respiratory control ratio (RCR) of mitochondria and membrane potential changes were compared. The results showed that the rats in the model group had tracheal structure abnormities, epithelial cell damages, cilia structure defects, capillary injection, alveolar exudates, and inflammatory cells compared to those in the control group. RCR of mitochondria and membrane potential of rats in the model group were significantly lower than those of rats in the control group (P<0.05). Damaged lung tissue and decreased mitochondrial activity and membrane potential are detected in the rat models of asthenic lung and phlegm blocking combined with CVA.
RESUMEN
The purpose of this study was to find the optimal technical approach to identify the presence of fibrocytes in formalin-fixed, paraffin-embedded archival cardiac tissue with CHD (coronary heart disease). Using the coexpression markers CD45 and αSMA, the presence of fibrocytes was examined by three different methods, including double immunohistochemistry staining, combination labeling of immunohistochemistry and immunofluorescence and double immunofluorescence labeling. Double immunohistochemistry staining was very difficult to identify the CD45(+)/αSMA(+) fibrocytes. Although combination staining of immunohistochemistry and immunofluorescence has made it possible to evaluate the co-localization of CD45 and αSMA in the fibrocytes, this method was prone to produce many false positive cells. In contrast, CD45(+)/αSMA(+) fibrocytes could be clearly recognized by double immunofluorescence labeling. In conclusion, double immunofluorescence labeling is the optimal technical approach to identify the presence of fibrocytes in routinely processed cardiac tissue with CHD.
Asunto(s)
Enfermedad Coronaria/patología , Fibroblastos/patología , Técnica del Anticuerpo Fluorescente/métodos , Inmunohistoquímica/métodos , Miocardio/patología , Actinas/metabolismo , Enfermedad Coronaria/metabolismo , Fibroblastos/metabolismo , Humanos , Antígenos Comunes de Leucocito/metabolismo , Miocardio/metabolismo , Adhesión en Parafina , Fijación del TejidoRESUMEN
OBJECTIVES: Extracorporeal shock wave (SW) therapy ameliorates cardiac remodeling after acute myocardial infarction (AMI). However, it remains to be examined whether and how SW therapy ameliorates myocardial fibrosis after AMI. Fibrocytes are associated with myocardial fibrosis. Thus, we examined whether SW therapy ameliorates myocardial fibrosis and whether fibrocytes are associated after AMI in pigs. MATERIALS AND METHODS: AMI was created by coronary embolism. Twenty-five pigs were divided into three groups: AMI+SW group (AMI with SW therapy, n=15), AMI group (without SW therapy, n=5), and sham+SW group (SW therapy without AMI, n=5). The collagen area fraction was examined by Masson's trichrome staining. The presence of fibrocytes was identified by immunofluorescence and confocal microscopy. The location of CXCL12 was examined by immunohistochemistry. RESULTS: Compared with the AMI group, the AMI+SW group showed significantly ameliorated myocardial fibrosis in terms of collagen area fraction (27.21±8.13 vs. 10.13±4.96, P<0.05) and reduced fibrocytes (CD34/α-smooth muscle actin: 35.40±11.72 vs. 12.27±7.71, P<0.05; CXCR4/α-smooth muscle actin: 40.80±8.96 vs. 16.54±6.38, P<0.05). There were positive correlations between the collagen area fraction and the number of fibrocytes (r=0.936; P<0.05) and between the number of CXCR4 fibrocytes and the SDF-1/CXCL12 cells (r=0.802; P<0.05) in the three groups. CONCLUSION: The results show that SW therapy ameliorates myocardial fibrosis after AMI in pigs, which is associated with the decreased amount of fibrocytes.
Asunto(s)
Fibroblastos/patología , Ondas de Choque de Alta Energía/uso terapéutico , Infarto del Miocardio/terapia , Miocardio/patología , Remodelación Ventricular , Animales , Quimiocina CXCL12/metabolismo , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibrosis , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Microscopía Confocal , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Sus scrofaRESUMEN
Fibrocytes contribute significantly to fibrosis in many cardiac diseases. However, it is not clear whether fibrocytes are associated with the fibrosis in coronary heart disease (CHD). The aim of this study was to determine whether fibrocytes are involved in cardiac fibrosis in CHD. We identified the presence of fibrocytes in CHD heart by immunofluorescence and confocal microscopy, examined the collagen volume fraction by Masson's Trichrome staining, and evaluated the correlation between fibrocytes and cardiac fibrosis. In conjunction, we examined the location of CXCL12, a homing factor and specific ligand for CXCR4, by immunohistochemistry. Fibrocytes were identified in 26 out of 27 CHD hearts and in 10 out of 11 normal hearts. Combinations, including CD34/αSMA, CD34/procollagen-I, CD45/αSMA, CXCR4/procollagen-I and CXCR4/αSMA, stained significantly more fibrocytes in CHD hearts as compared with those in normal hearts (p<0.05). There were positive correlations between the collagen volume fraction and the amount of fibrocytes (r=0.558; p=0.003<0.01) and between the number of CXCR4(+) fibrocytes and the CXCL12(+) cells (r=0.741; p=0.000<0.01) in CHD hearts. Based upon these findings, we conclude that fibrocytes, likely recruited through the CXCR4/CXCL12 axis, may contribute to the increase in the fibroblast population in CHD heart.
Asunto(s)
Enfermedad Coronaria/patología , Fibroblastos/patología , Fibrosis/patología , Quimiocina CXCL1/análisis , Quimiocina CXCL1/biosíntesis , Enfermedad Coronaria/metabolismo , Femenino , Fibroblastos/metabolismo , Fibrosis/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Masculino , Microscopía Confocal , Persona de Mediana Edad , Receptores CXCR4/análisis , Receptores CXCR4/biosíntesisRESUMEN
BACKGROUND: Cardiac shock wave therapy (CSWT) improves cardiac function in patients with severe coronary artery disease (CAD). We aimed to evaluate the clinical outcomes of a new CSWT treatment regimen. METHODS: The 55 patients with severe CAD were randomly divided into 3 treatment groups. The control group (n = 14) received only medical therapy. In group A ( n = 20), CSWT was performed 3 times within 3 months. In group B ( n = 21), patients underwent 3 CSWT sessions/week, and 9 treatment sessions were completed within 1 month. Primary outcome measurement was 6-minute walk test (6MWT). Other measurements were also evaluated. RESULTS: The 6MWT, CCS grading of angina, dosage of nitroglycerin, NYHA classification, and SAQ scores were improved in group A and B compared to control group. CONCLUSIONS: A CSWT protocol with 1 month treatment duration showed similar therapeutic efficacy compared to a protocol of 3 months duration. CLINICAL TRIAL REGISTRY: We have registered on ClinicalTrials.gov, the protocol ID is CSWT IN CHINA.
Asunto(s)
Enfermedad de la Arteria Coronaria/terapia , Ondas de Choque de Alta Energía/uso terapéutico , Anciano , Angina de Pecho/etiología , Angina de Pecho/prevención & control , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/fisiopatología , Tolerancia al Ejercicio , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Resultado del TratamientoRESUMEN
OBJECTIVE: To explore the effect of low-energy extracorporeal shock wave therapy to improve myocardial micro-vascular circulation after acute myocardial infarction at the early stage in pig model. METHODS: A total of 25 domestic pigs were used in this study. Model of acute myocardial infarction (AMI) was created successfully by the implantation of angioplasty balloon in mid-distal segment of left anterior descending coronary artery (n=20). These AMI animals were divided two groups. Extracorporeal shock wave therapy to the ischemic myocardial region was performed for the group of shock wave therapy (n=15) at 3 days after acute myocardial infarction; The remaining AMI animals were treated in the same manner, but without the shock wave therapy (n=5), The other health animals (n=5) were used as blank control group. The number of endothelium cell, capillary density, VEGF mRNA level and collateral vessel Rentrop score in each group were evaluated and compared. RESULTS: Shock wave treatment up-regulated the mRNA expression of VEGF in the model of acute myocardial infarction (P < 0.05). Furthermore, the number of capillaries was significantly higher in the shock wave group than that of positive and blank control group (P < 0.05). The Rentrop score of collateral vessel indicated the reconstruction of collateral circulation in shock wave group. CONCLUSION: Extracorporeal cardiac shock wave therapy could effectively induce angiogenesis, up-regulate the expression of angiogenic factor, resulting in an improvement in micro-vascular circulation reconstruction of ischemic myocardial region.