RESUMEN
Protein phosphorylation is a pivotal post-translational modification modulating various cellular processes. In Gram-positive bacteria, the protein arginine kinase McsB, along with its activator McsA, has a key role in labeling misfolded and damaged proteins during stress. However, the activation mechanism of McsB by McsA remains elusive. Here we report the cryo-electron microscopy structure of a tetrameric McsA-McsB complex at 3.41 Å resolution. Biochemical analysis indicates that the homotetrameric assembly is essential for McsB's kinase activity. The conserved C-terminal zinc finger of McsA interacts with an extended loop in McsB, optimally orienting a critical catalytic cysteine residue. In addition, McsA binding decreases the CtsR's affinity for McsB, enhancing McsB's kinase activity and accelerating the turnover rate of CtsR phosphorylation. Furthermore, McsA binding also increases McsB's thermostability, ensuring its activity under heat stress. These findings elucidate the structural basis and activation mechanism of McsB in stress response.
RESUMEN
BACKGROUND: Our research endeavored to develop a robust predictive signature grounded in super-enhancer-related genes (SERGs), with the dual objectives of forecasting survival outcomes and evaluating the tumor immune microenvironment (TiME) in hepatocellular carcinoma (HCC). METHODS: HCC RNA-sequencing data were retrieved from The Cancer Genome Atlas (TCGA), and 365 patients were randomly assigned to training or testing sets in 1:1 ratio. SERGs of HCC were downloaded from Super-Enhancer Database (SEdb). On the basis of training set, a SERGs signature was identified, and its prognostic value was confirmed by internal and external validation (GSE14520) sets. We subsequently examined the model for potential functional enrichment and the degree of tumor immune infiltration. Additionally, we carried out in vitro experiments to delve into the biological functions of CBX2 gene. RESULTS: An SE-related prognostic model including CBX2, TPX2, EFNA3, DNASE1L3 and SOCS2 was established and validated. According to this risk model, patients in the high-risk group had a significantly worse prognosis, and their immune cell infiltration was significantly different from that of low-risk group. Moreover, the high-risk group exhibited a significant enrichment of tumor-associated pathological pathways. The SERGs signature can generally be utilized to screen HCC patients who are likely to respond to immunotherapy, as there is a positive correlation between the risk score and the Tumor Immune Dysfunction and Exclusion (TIDE) score. Furthermore, the downregulation of the CBX2 gene expression was found to inhibit HCC cell viability, migration, and cell cycle progression, while simultaneously promoting apoptosis. CONCLUSIONS: We developed a novel HCC prognostic model utilizing SERGs, indicating that patients with high-risk score not only face a poorer prognosis but also may exhibit a diminished therapeutic response to immune checkpoint inhibitors (ICIs). This model is designed to tailor personalized treatment strategies to the individual needs of each patient, thereby improving the overall clinical outcomes for HCC patients. Furthermore, CBX2 is a promising candidate for therapeutic intervention in HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Medicina de Precisión , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Pronóstico , Medicina de Precisión/métodos , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Femenino , Masculino , Elementos de Facilitación Genéticos , Línea Celular Tumoral , Proliferación CelularRESUMEN
Cold stress can impact plant biology at both the molecular and morphological levels. We cultivated two different types of tobacco seedlings using distinct seeding methods, observing significant differences in their cold tolerance at 4 °C. After 12 h cold stress, shallow water seeding cultivation treatment demonstrates a relatively good growth state with slight wilting of the leaves. Tobacco grown using the float system exhibited short, thick roots, while those cultivated through shallow water seeding had elongated roots with more tips and forks. After cold stress, the shallow water seeding cultivation treatment demonstrated higher antioxidant enzyme activity, and lower malondialdehyde (MDA) content.Transcriptome analysis was performed on the leaves of these tobacco seedlings at three stages of cold treatment (before cold stress, after cold stress, and after 3 days of recovery). Upon analyzing the raw data, we found that the shallow water seeding cultivation treatment was associated with significant functional enrichment of nicotinamide adenine dinucleotide (NAD) biosynthesis and NAD metabolism before cold stress, enrichment of functions related to the maintenance of cellular structure after cold stress, and substantial functional enrichment related to photosynthesis during the recovery period. Weighted gene co-expression network analysis (WGCNA) was conducted, identifying several hub genes that may contribute to the differences in cold tolerance between the two tobacco seedlings. Hub genes related to energy conversion were predominantly identified in shallow water seeding cultivation treatment during our analysis, surpassing findings in other areas. These include the AS gene, which controls the synthesis of NAD precursors, the PED1 gene, closely associated with fatty acid ß-oxidation, and the RROP1 gene, related to ATP production.Overall, our study provides a valuable theoretical basis for exploring improved methods of cultivating tobacco seedlings. Through transcriptome sequencing technology, we have elucidated the differences in gene expression in different tobacco seedlings at three time points, identifying key genes affecting cold tolerance in tobacco and providing possibilities for future gene editing.
Asunto(s)
Nicotiana , Plantones , Agua , Nicotiana/genética , Nicotiana/fisiología , Nicotiana/crecimiento & desarrollo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología , Agua/metabolismo , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , FríoRESUMEN
In order to investigate the effect of slaughter weight (SW) on carcass characteristics and meat quality, we measured the carcass characteristics, meat quality, and amino acid metabolomics characteristics of longissimus dorsi (LD) muscle from Tianfu finishing (TF) pigs. Based on SW, 13 pigs were divided into three groups (100-kg group, 125-kg group, and 150-kg group with 3, 5, 5 pigs in each group, respectively). Raising SW to 125 kg or 150 kg increased average backfat thickness (P < 0.01) and intramuscular fat content (P < 0.01), and decreased shear force (P < 0.01). A total of 231 amino acid metabolome from three amino acid classes identified with metabolomics were analyzed, and 93 differentially expressed metabolites (DEMs) were identified (69 up-regulated DEMs and 24 down-regulated DEMs). The DEMs, including urea, 3-iodo-L-tyrosine, N-glycyl-L-leucine, and N, N-dimethylglycine with amino acid metabolism, were significantly induced (P < 0.01). KEGG pathway analysis showed that these DEMs were significantly enriched (P < 0.01) in 135 metabolism pathways, including pathways related to amino acid metabolism, such as arginine and proline metabolism, glycine, serine and threonine metabolism, alanine, aspartate and glutamate metabolism, tryptophan metabolism, and beta-alanine metabolism. Our research findings provided new insights into the impact of SW on amino acid distribution and theoretical support for genetic breeding of meat quality of TF pigs. However, raising SW to 125 kg, or more, decreased the carcass leanness of live TF pigs and had no benefits to pork quality attributes.
RESUMEN
Aspergillus niger is a well-known workhorse for the industrial production of enzymes and organic acids. This fungus can also cause postharvest diseases in fruits. Although Agrobacterium tumefaciens-mediated transformation (ATMT) based on antibiotic resistance markers has been effectively exploited for inspecting functions of target genes in wild-type fungi, it still needs to be further improved in A. niger. In the present study, we re-examined the ATMT in the wild-type A. niger strains using the hygromycin resistance marker and introduced the nourseothricin resistance gene as a new selection marker for this fungus. Unexpectedly, our results revealed that the ATMT method using the resistance markers in A. niger led to numerous small colonies as false-positive transformants on transformation plates. Using the top agar overlay technique to restrict false positive colonies, a transformation efficiency of 87 ± 18 true transformants could be achieved for 106 conidia. With two different selection markers, we could perform both the deletion and complementation of a target gene in a single wild-type A. niger strain. Our results also indicated that two key regulatory genes (laeA and veA) of the velvet complex are required for A. niger to infect apple fruits. Notably, we demonstrated for the first time that a laeA homologous gene from the citrus postharvest pathogen Penicillium digitatum was able to restore the acidification ability and pathogenicity of the A. niger ΔlaeA mutant. The dual resistance marker ATMT system from our work represents an improved genetic tool for gene function characterization in A. niger.
Asunto(s)
Agrobacterium tumefaciens , Aspergillus niger , Transformación Genética , Aspergillus niger/genética , Agrobacterium tumefaciens/genética , Malus/microbiología , Farmacorresistencia Fúngica/genética , Marcadores Genéticos , Proteínas Fúngicas/genética , Enfermedades de las Plantas/microbiología , Higromicina B/farmacología , Frutas/microbiología , Genes Fúngicos/genéticaRESUMEN
Cargo translocation across membranes is a crucial aspect of secretion. In conventional secretion signal peptide-equipped proteins enter the endoplasmic reticulum (ER), whereas a subset of cargo lacking signal peptides translocate into the ER-Golgi intermediate compartment (ERGIC) in a process called unconventional protein secretion (UcPS). The regulatory events at the ERGIC in UcPS are unclear. Here we reveal the involvement of ERGIC-localized small GTPases, Rab1 (Rab1A and Rab1B) and Rab2A, in regulating UcPS cargo transport via TMED10 on the ERGIC. Rab1 enhances TMED10 translocator activity, promoting cargo translocation into the ERGIC, whereas Rab2A, in collaboration with KIF5B, regulates ERGIC compartmentalization, establishing a UcPS-specific compartment. This study highlights the pivotal role of ERGIC-localized Rabs in governing cargo translocation and specifying the ERGIC's function in UcPS.
Asunto(s)
Retículo Endoplásmico , Aparato de Golgi , Transporte de Proteínas , Retículo Endoplásmico/metabolismo , Humanos , Aparato de Golgi/metabolismo , Células HeLa , Cinesinas/metabolismo , Cinesinas/genética , Células HEK293 , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Animales , Proteínas de Unión al GTP rab1/metabolismo , Proteínas de Unión al GTP rab1/genéticaRESUMEN
Cordyceps militaris is a well-known medicinal mushroom in Asian countries. This edible fungus has been widely exploited for traditional medicine and functional food production. C. militaris is a heterothallic fungus that requires both the mating-type loci, MAT1-1 and MAT1-2, for fruiting body formation. However, recent studies also indicated two groups of C. militaris, including monokaryotic strains carrying only MAT1-1 in their genomes and heterokaryotic strains harboring both MAT1-1 and MAT1-2. These strain groups are able to produce fruiting bodies under suitable cultivating conditions. In previous work, we showed that monokaryotic strains are more stable than heterokaryotic strains in fruiting body formation through successive culturing generations. In this study, we report a high cordycepin-producing monokaryotic C. militaris strain (HL8) collected in Vietnam. This strain could form normal fruiting bodies with high biological efficiency and contain a cordycepin content of 14.43 mg/g lyophilized fruiting body biomass. The ethanol extraction of the HL8 fruiting bodies resulted in a crude extract with a cordycepin content of 69.15 mg/g. Assays of cytotoxic activity on six human cancer cell lines showed that the extract inhibited the growth of all these cell lines with the IC50 values of 6.41-11.51 µg/mL. Notably, the extract significantly reduced cell proliferation and promoted apoptosis of breast cancer cells. Furthermore, the extract also exhibited strong antifungal activity against Malassezia skin yeasts and the citrus postharvest pathogen Penicillium digitatum. Our work provides a promising monokaryotic C. militaris strain as a bioresource for medicine, cosmetics, and fruit preservation.
Asunto(s)
Antineoplásicos , Cordyceps , Neoplasias , Penicillium , Humanos , Penicillium/genética , Cuerpos Fructíferos de los HongosRESUMEN
Plant protein emulsifiers, particularly rapeseed protein isolate with its superior amino acid composition and predominantly globular protein, have captured significant interest in the food industry. Nonetheless, the application of these proteins has been stymied by their lackluster emulsification properties. Addressing this challenge, our study implements an innovative asymmetric acylation technique to modify the surface of rapeseed cruciferin (RC), morphing it into a structure resembling Janus nanoparticles. This alteration amplifies the emulsification prowess of RC by a remarkable 2.7 times compared to its natural form, and 1.43 times over its conventionally acylated counterpart. The asymmetrically acylated RC, marked by a distinctive three-phase contact angle of 90.4°, manifests an outstanding amphiphilic character. Moreover, it surpasses both the natural and conventionally acylated RC in terms of diffusion, penetration, and rearrangement rates, as well as protein concentration at the oil-water interface. Compared to commonly used emulsifiers in the food industry, such as lecithin and soy protein, the asymmetrically acylated RC stands out, stabilizing emulsions with the tiniest particle size and effectively staving off emulsion stratification over a longer duration. This study underscores that asymmetric acylation serves as a reliable methodology for producing efficient plant protein emulsifiers, considerably amplifying their utility in the food industry.
Asunto(s)
Brassica napus , Brassica rapa , Emulsiones/química , Emulsionantes/química , Brassica rapa/química , Proteínas de Plantas/química , AcilaciónRESUMEN
Allergen component products, such as recombinant proteins and epitope peptides of allergic components, are used as an adjunct to allergen-specific immunotherapy. We characterized a novel allergen, Tyr p 31, from Tyrophagus putrescentiae, a common allergenic mite. T. putrescentiae total RNA was amplified to Tyr p 31-encoding cDNA, which was inserted into pET28a(+). pET28a(+)-Tyr p 31 was then transformed into Rosetta 2 (DE3) pLysS cells and expressed under isopropyl ß-D-thiogalactoside induction. Next, we visualized Tyr p 31 through sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blotting based on its theoretical molecular weight. Recombinant Tyr p 31 (rTyr p 31) was purified, and its secondary structure was noted to comprise α-helices, antiparallel coils, ß-turns, parallel coils, and random coils. Our enzyme-linked immunosorbent assay and Western blotting results for T. putrescentiae-positive sera from children with allergic disorders demonstrated rTyr p 31-specific IgE-positivity rates of 72.41 % and 85.7 %, respectively. In BEAS-2B cells, rTyr p 31 increased IL-6 and IL-8 expression; furthermore, BEAS-2B cells treated with 30 µg/mL rTyr p 31 demonstrated 100 upregulated and 12 downregulated genes. In summary, we identified Tyr p 31, a novel T. putrescentiae allergen component, and noted rTyr p 31 to have a high IgE-binding rate and strong immunogenicity.
Asunto(s)
Alérgenos , Hipersensibilidad , Niño , Humanos , Alérgenos/química , Inmunoglobulina E , Proteínas Recombinantes/genética , Monofenol Monooxigenasa , TirosinaRESUMEN
Severe COVID-19 patients exhibit impaired IFN-I response due to decreased IFN-ß production, allowing persistent viral load and exacerbated inflammation. While the SARS-CoV-2 nucleocapsid (N) protein has been implicated in inhibiting innate immunity by interfering with IFN-ß signaling, the specific underlying mechanism still needs further investigation for a comprehensive understanding. This study reveals that the SARS-CoV-2 N protein enhances interaction between the human SUMO-conjugating enzyme UBC9 and MAVS. Increased MAVS-UBC9 interaction leads to enhanced SUMOylation of MAVS, inhibiting its ubiquitination, resulting in the inhibition of phosphorylation events involving IKKα, TBK1, and IRF3, thus disrupting IFN-ß signaling. This study highlights the role of the N protein of SARS-CoV-2 in modulating the innate immune response by affecting the MAVS SUMOylation and ubiquitination processes, leading to inhibition of the IFN-ß signaling pathway. These findings shed light on the complex mechanisms utilized by SARS-CoV-2 to manipulate the host's antiviral defenses and provide potential insights for developing targeted therapeutic strategies against severe COVID-19.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Transducción de Señal , Sumoilación , UbiquitinaciónRESUMEN
BACKGROUND: Studying the composition and developmental mechanisms in mammary gland is crucial for healthy growth of newborns. The mammary gland is inherently heterogeneous, and its physiological function dependents on the gene expression of multiple cell types. Most studies focused on epithelial cells, disregarding the role of neighboring adipocytes. RESULTS: Here, we constructed the largest transcriptomic dataset of porcine mammary gland cells thus far. The dataset captured 126,829 high-quality nuclei from physiological mammary glands across five developmental stages (d 90 of gestation, G90; d 0 after lactation, L0; d 20 after lactation, L20; 2 d post natural involution, PI2; 7 d post natural involution, PI7). Seven cell types were identified, including epithelial cells, adipocytes, endothelial cells, fibroblasts cells, immune cells, myoepithelial cells and precursor cells. Our data indicate that mammary glands at different developmental stages have distinct phenotypic and transcriptional signatures. During late gestation (G90), the differentiation and proliferation of adipocytes were inhibited. Meanwhile, partly epithelial cells were completely differentiated. Pseudo-time analysis showed that epithelial cells undergo three stages to achieve lactation, including cellular differentiation, hormone sensing, and metabolic activation. During lactation (L0 and L20), adipocytes area accounts for less than 0.5% of mammary glands. To maintain their own survival, the adipocyte exhibited a poorly differentiated state and a proliferative capacity. Epithelial cells initiate lactation upon hormonal stimulation. After fulfilling lactation mission, their undergo physiological death under high intensity lactation. Interestingly, the physiological dead cells seem to be actively cleared by immune cells via CCL21-ACKR4 pathway. This biological process may be an important mechanism for maintaining homeostasis of the mammary gland. During natural involution (PI2 and PI7), epithelial cell populations dedifferentiate into mesenchymal stem cells to maintain the lactation potential of mammary glands for the next lactation cycle. CONCLUSION: The molecular mechanisms of dedifferentiation, proliferation and redifferentiation of adipocytes and epithelial cells were revealed from late pregnancy to natural involution. This cell transcriptomic profile constitutes an essential reference for future studies in the development and remodeling of the mammary gland at different stages.
RESUMEN
The medicinal mushroom Cordyceps militaris is widely exploited in traditional medicine and nutraceuticals in Asian countries. However, fruiting body production in C. militaris is facing degeneration through cultivation batches, and the molecular mechanism of this phenomenon remains unclear. This study showed that fruiting body formation in three different C. militaris strains, namely G12, B12, and HQ1, severely declined after three successive culturing generations using the spore isolation method. PCR analyses revealed that these strains exist as heterokaryons and possess both the mating-type loci, MAT1-1 and MAT1-2. Further, monokaryotic isolates carrying MAT1-1 or MAT1-2 were successfully separated from the fruiting bodies of all three heterokaryotic strains. A spore combination of the MAT1-1 monokaryotic isolate and the MAT1-2 monokaryotic isolate promoted fruiting body formation, while the single monokaryotic isolates could not do that themselves. Notably, we found that changes in ratios of the MAT1-2 spores strongly influenced fruiting body formation in these strains. When the ratios of the MAT1-2 spores increased to more than 15 times compared to the MAT1-1 spores, the fruiting body formation decreased sharply. In contrast, when MAT1-1 spores were increased proportionally, fruiting body formation was only slightly reduced. Our study also proposes a new solution to mitigate the degeneration in the heterokaryotic C. militaris strains caused by successive culturing generations.
RESUMEN
BACKGROUND: This study targeted at developing a robust, prognostic signature based on super-enhancer-related genes (SERGs) to reveal survival prognosis and immune microenvironment of breast cancer. METHODS: RNA-sequencing data of breast cancer were retrieved from The Cancer Genome Atlas (TCGA), 1069 patients of which were randomly assigned into training or testing set in 1:1 ratio. SERGs were downloaded from Super-Enhancer Database (SEdb). After which, a SERGs signature was established based on the training set, with its prognostic value further validated in the testing set. Subsequently, we identified the potential function enrichment and tumor immune infiltration of the model. Moreover, in vitro experiments were completed to further explore the biological functions of ZIC2 gene (one of the risk genes in the prognostic model) in breast cancer. RESULTS: A risk score system of prognostic value was constructed with 6 SERGs (ZIC2, NFE2, FOXJ1, KLF15, POU3F2 and SPIB) to find patients in high-risk group with significantly worse prognosis in both training and testing sets. In addition, a multivariate regression was established via integrating the 6 genes with age and N stage, indicating well performance by calibration, time-dependent receiver operating characteristic (ROC) analysis and decision curve analysis (DCA). Further analysis demonstrated that tumor-associated pathological processes and pathways were significantly enriched in the high-risk group. In general, the novel SERGs signature could be applied to screen breast cancer with immunosuppressive microenvironment for the risk score was negatively correlated with ESTIMATE score, tumor-infiltration lymphocytes (such as CD4 + and CD8 + T cell), immune checkpoints and chemotactic factors. Furthermore, down-regulation of ZIC2 gene expression inhibited the cell viability, cellular migration and cell cycle of breast cancer cells. CONCLUSIONS: The novel SERGs signature could predict the prognosis of breast cancer; and SERGs might serve as potential therapeutic targets for breast cancer.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Secuencias Reguladoras de Ácidos Nucleicos , Pronóstico , Linfocitos T CD8-positivos , Calibración , Microambiente Tumoral/genéticaRESUMEN
The filamentous fungus Aspergillus niger is widely exploited as an industrial workhorse for producing enzymes and organic acids. So far, different genetic tools, including CRISPR/Cas9 genome editing strategies, have been developed for the engineering of A. niger. However, these tools usually require a suitable method for gene transfer into the fungal genome, like protoplast-mediated transformation (PMT) or Agrobacterium tumefaciens-mediated transformation (ATMT). Compared to PMT, ATMT is considered more advantageous because fungal spores can be used directly for genetic transformation instead of protoplasts. Although ATMT has been applied in many filamentous fungi, it remains less effective in A. niger. In the present study, we deleted the hisB gene and established an ATMT system for A. niger based on the histidine auxotrophic mechanism. Our results revealed that the ATMT system could achieve 300 transformants per 107 fungal spores under optimal transformation conditions. The ATMT efficiency in this work is 5 - 60 times higher than those of the previous ATMT studies in A. niger. The ATMT system was successfully applied to express the DsRed fluorescent protein-encoding gene from the Discosoma coral in A. niger. Furthermore, we showed that the ATMT system was efficient for gene targeting in A. niger. The deletion efficiency of the laeA regulatory gene using hisB as a selectable marker could reach 68 - 85% in A. niger strains. The ATMT system constructed in our work represents a promising genetic tool for heterologous expression and gene targeting in the industrially important fungus A. niger.
Asunto(s)
Agrobacterium tumefaciens , Aspergillus niger , Aspergillus niger/genética , Transformación Genética , Agrobacterium tumefaciens/genética , Genoma FúngicoRESUMEN
OBJECTIVES: This work aimed to construct a versatile, effective, and food-grade Agrobacterium tumefaciens-mediated transformation (ATMT) system for recombinant expression in the filamentous fungus Penicillium rubens (also known as Pencillium chrysogenum). RESULTS: In this study, the wild-type P. chrysogenum VTCC 31172 strain was re-classified as P. rubens by a multilocus sequencing analysis. Further, the pyrG gene required for uridine/uracil biosynthesis was successfully deleted in the VTCC 31172 strain by homologous recombination to generate a stable uridine/uracil auxotrophic mutant (ΔpyrG). The growth of the P. rubens ΔpyrG strain could be restored by uridine/uracil supplementation, and a new ATMT system based on the uridine/uracil auxotrophic mechanism was established for this strain. The optimal ATMT efficiency could reach 1750 transformants for 106 spores (equivalent to 0.18%). In addition, supplementation of uridine/uracil at the concentrations of 0.005-0.02% during the co-cultivation process significantly promoted transformation efficiency. Especially, we demonstrated that the pyrG marker and the amyB promoter from the koji mold Aspergillus oryzae were fully functional in P. rubens ΔpyrG. Expression of the DsRed reporter gene under the regulation of the A. oryzae amyB promoter lighted up the mycelium of P. rubens with a robust red signal under fluorescence microscopy. Furthermore, genomic integration of multiple copies of the Aspergillus fumigatus phyA gene under the control of the amyB promoter significantly enhanced phytase activity in P. rubens. CONCLUSIONS: The ATMT system developed in our work provides a safe genetic platform for producing recombinant products in P. rubens without using drug resistance markers.
Asunto(s)
Penicillium , Penicillium/genética , Penicillium/metabolismo , Agrobacterium tumefaciens/genética , Uracilo/metabolismo , Uridina , Transformación GenéticaRESUMEN
BACKGROUND: The aim of this study was to explore the mechanism of complement C3a mediating podocyte injury during ischemia-reperfusion acute kidney injury (IR-AKI) and post-injury fibrosis. METHODS: Renal artery clamping was used to establish IR-AKI and post-injury fibrosis model. HE and Masson staining were performed to observe renal fibrosis. The protein abundance levels were measured along with inflammatory markers, renal complement C3. Podocytes were treated with C3a with or without Toll-like receptor 4(TLR4) inhibitor. The effects of TLR4 up-regulation by TLR4 plasmids were examined. RESULTS: C3-/- resulted in amelioration of renal dysfunction by reducing podocyte damage and renal fibrosis. Immunoblot with renal tissue homogenates from IR-AKI mice revealed that C3-/- decreased TLR4/Nuclear Factor-κB (NFκB)-P65. CONCLUSION: Our results indicate that modulating C3/TLR4/NFκB-P65 signaling pathway is a novel therapeutic target for the IR-AKI and post-injury fibrosis.
Asunto(s)
Lesión Renal Aguda , Podocitos , Daño por Reperfusión , Ratones , Animales , Podocitos/metabolismo , Podocitos/patología , Complemento C3/genética , Complemento C3/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/uso terapéutico , Riñón/patología , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Transducción de Señal , FN-kappa B/genética , FN-kappa B/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Isquemia/metabolismo , Isquemia/patología , Reperfusión , FibrosisRESUMEN
Neijiang (NJ) and Yacha (YC) are two indigenous pig breeds in the Sichuan basin of China, displaying higher resistance to diseases, lower lean ratio, and slower growth rate than the commercial Western pig breed Yorkshire (YS). The molecular mechanisms underlying the differences in growth and development between these pig breeds are still unknown. In the present study, five pigs from NJ, YC, and YS breeds were subjected to the whole genome resequencing, and then the differential single-nucleotide polymorphisms (SNPs) were screened using a 10-kb window sliding in 1-kb step using the Fst method. Finally, 48,924, 48,543, and 46,228 nonsynonymous single-nucleotide polymorphism loci (nsSNPs) were identified between NJ and YS, NJ and YC, and YC and YS, which highly or moderately affected 2,490, 800, and 444 genes, respectively. Moreover, three nsSNPs were detected in the genes of acetyl-CoA acetyltransferase 1 (ACAT1) insulin-like growth factor 2 receptor (IGF2R), insulin-like growth factor 2 and mRNA-binding protein 3 (IGF2BP3), which potentially affected the transformation of acetyl-CoA to acetoacetyl-CoA and the normal functions of the insulin signaling pathways. Moreover, serous determinations revealed significantly lower acetyl-CoA content in YC than in YS, supporting that ACAT1 might be a reason explaining the differences in growth and development between YC and YS breeds. Contents of phosphatidylcholine (PC) and phosphatidic acid (PA) significantly differed between the pig breeds, suggesting that glycerophospholipid metabolism might be another reason for the differences between Chinese and Western pig breeds. Overall, these results might contribute basic information to understand the genetic differences determining the phenotypical traits in pigs.
Asunto(s)
Porcinos , Animales , Acetilcoenzima A , Genoma , Polimorfismo de Nucleótido Simple , Porcinos/genética , Porcinos/crecimiento & desarrolloRESUMEN
Destruction of citrus fruits by fungal pathogens during preharvest and postharvest stages can result in severe losses for the citrus industry. Antagonistic microorganisms used as biological agents to control citrus pathogens are considered alternatives to synthetic fungicides. In this study, we aimed to identify fungal pathogens causing dominant diseases on citrus fruits in a specialized citrus cultivation region of Vietnam and inspect soilborne Bacillus isolates with antifungal activity against these pathogens. Two fungal pathogens were characterized as Colletotrichum gloeosporioides and Penicillium digitatum based on morphological characteristics and ribosomal DNA internal transcribed spacer sequence analyses. Reinfection assays of orange fruits confirmed that C. gloeosporioides causes stem-end rot, and P. digitatum triggers green mold disease. By the heterologous expression of the green fluorescent protein (GFP) in C. gloeosporioides using Agrobacterium tumefaciens-mediated transformation, we could observe the fungal infection process of the citrus fruit stem-end rot caused by C. gloeosporioides for the first time. Furthermore, we isolated and selected two soilborne Bacillus strains with strong antagonistic activity for preventing the decay of citrus fruits by these pathogens. Molecular analyses of 16 S rRNA and gyrB genes showed that both isolates belong to B. velezensis. Antifungal activity assays indicated that bacterial culture suspensions could strongly inhibit C. gloeosporioides and P. digitatum, and shield orange fruits from the invasion of the pathogens. Our work provides a highly effective Bacillus-based preservative solution for combating the fungal pathogens C. gloeosporioides and P. digitatum to protect citrus fruits at the postharvest stages.
RESUMEN
Elevated atmospheric carbon dioxide concentrations (eCO2) can affect both herbivorous insects and their host plants. The fall armyworm (FAW), Spodoptera frugiperda, is a highly polyphagous agricultural pest that may attack more than 350 host plant species and has developed resistance to both conventional and novel-action insecticides. However, the effects of eCO2 on host adaptability and insecticide resistance of FAW are unclear. We hypothesized that eCO2 might affect insecticide resistance of FAW by affecting its host plants. To test this hypothesis, we investigated the effect of eCO2 on (1) FAW's susceptibility to chlorantraniliprole after feeding on wheat, (2) FAW's population performance traits (including the growth and reproduction), and (3) changes in gene expression in the FAW by transcriptome sequencing. The toxicity of chlorantraniliprole against the FAW under eCO2 (800 µL/L) stress showed that the LC50 values were 2.40, 2.06, and 1.46 times the values at the ambient CO2 concentration (400 µL/L, aCO2) for the three generations, respectively. Under eCO2, the life span of pupae and adults and the total number of generations were significantly shorter than the FAW under aCO2. Compared to the aCO2 treatment, the weights of the 3rd and 4th instar larvae and pupae of FAW under eCO2 were significantly heavier. Transcriptome sequencing results showed that more than 79 detoxification enzyme genes in FAW were upregulated under eCO2 treatment, including 40 P450, 5 CarE, 17 ABC, and 7 UGT genes. Our results showed that eCO2 increased the population performance of FAW on wheat and reduced its susceptibility to chlorantraniliprole by inducing the expression of detoxification enzyme genes. This study has important implications for assessing the damage of FAW in the future under the environment of increasing atmospheric CO2 concentration.