Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Insects ; 14(12)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38132631

RESUMEN

In this study, we found that both heat and cold stresses significantly affected the survival and reproduction of both sexes in Spodoptera frugiperda adults, with larvae showing relatively higher extreme temperature tolerance. Further transcriptomic analysis in adults found remarkable differences and similarities between sexes in terms of temperature stress responses. Metabolism-related processes were suppressed in heat stressed females, which did not occur to the same extend in males. Moreover, both heat and cold stress reduced immune activities in both sexes. Heat stress induced the upregulation of many heat shock proteins in both sexes, whereas the response to cold stress was insignificant. More cold tolerance-related genes, such as cuticle proteins, UDP-glucuronosyltransferase, and facilitated trehalose transporter Tret1, were found upregulated in males, whereas most of these genes were downregulated in females. Moreover, a large number of fatty acid-related genes, such as fatty acid synthases and desaturases, were differentially expressed under heat and cold stresses in both sexes. Heat stress in females induced the upregulation of a large number of zinc finger proteins and reproduction-related genes; whereas cold stress induced downregulation in genes linked to reproduction. In addition, TRPA1-like encoding genes (which have functions involved in detecting temperature changes) and sex peptide receptor-like genes were found to be differentially expressed in stressed moths. These results indicate sex-specific heat and cold stress responses and adaptive mechanisms and suggest sex-specific trade-offs between stress-resistant progresses and fundamental metabolic processes as well as between survival and reproduction.

2.
Insects ; 15(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38249016

RESUMEN

In the present study, we found that blue light stress negatively affected the development periods, body weight, survival and reproduction of Spodoptera frugiperda, and it showed a dose-dependent reaction, as longer irradiation caused severer effects. Further transcriptome analysis found blue light stress induced fast and large-scale transcriptional changes in the head, thorax and, particularly, the abdomen of female S. frugiperda adults. A functional enrichment analysis indicated that shorter durations of blue light irradiation induced the upregulation of more stress response- and defense-related genes or pathways, such as abiotic stimuli detection and response, oxidative stress, ion channels and protein-kinase-based signal pathways. In the abdomen, however, different durations of blue-light-exposure treatments all induced the downregulation of a large number genes and pathways related to cellular processes, metabolism, catalysis and reproduction, which may be a trade-off between antistress defense and other processes or a strategy to escape stressful conditions. These results indicate irradiation duration- and tissue-specific blue light stress responses and consequences, as well as suggest that the stress that results in transcriptional alterations is associated with the stress that causes a fitness reduction in S. frugiperda females.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...