RESUMEN
Background: The judgment of the division point of the bile duct has always been one of the difficulties of laparoscopic left lateral sectionectomy (LLLS). The purpose of this study was to assess the effects of indocyanine green (ICG) fluorescence cholangiography during LLLS on the occurrence of biliary complications in both donors and recipients. The optimal dose and injection time of ICG were also investigated. Methods: This is a retrospective cohort study. From October 2016 to December 2022, the clinical data of 103 donors who underwent LLLS and relevant recipients were retrospectively analyzed. According to whether ICG fluorescence cholangiography was used, they were divided into a non-ICG group (n=46) and an ICG group (n=57). Biliary complications were observed and the optimal dose and injection time of ICG were explored. Results: Three donors in the non-ICG group suffered from bile leakage. Four grafts had multiple bile duct openings and biliary complications were observed in the relevant recipients who received these grafts in the non-ICG group. Two recipients had bile leakage, and the other two had biliary stenosis. There was no biliary complications both in donors and recipients in the ICG group. The fluorescence intensity of the liver was 108.1±17.6 at a dose of 0.004 mg/kg 90 minutes after injection, significantly weaker than that at 0.05 mg/kg 30 minutes (200.3±17.6, P=0.001) and 90 minutes after injection (140.2±15.4, P=0.001). The fluorescence intensity contrast value at a dose of 0.004 mg/kg was stronger than that at 0.05 mg/kg, both measured 90 minutes after injection (0.098±0.032 vs. 0.078±0.022, P=0.021). Conclusions: ICG fluorescence cholangiography is safe and feasible in LLLS. It reduces biliary complications in both donors and recipients. The optimal ICG dose was 0.004 mg/kg, and 90 minutes after injection was the best observation time. ICG fluorescence cholangiography is recommended for routine use in LLLS.
RESUMEN
Hepatectomy is still the major curative treatment for patients with liver malignancies. However, it is still a big challenge to remove the tumors in the central posterior area, especially if their location involves the retrohepatic inferior vena cava and hepatic veins. Ex vivo liver resection and auto-transplantation (ELRA), a hybrid technique of the traditional liver resection and transplantation, has brought new hope to these patients and therefore becomes a valid alternative to liver transplantation. Due to its technical difficulty, ELRA is still concentrated in a few hepatobiliary centers that have experienced surgeons in both liver resection and liver transplantation. The efficacy and safety of this technique has already been demonstrated in the treatment of benign liver diseases, especially in the advanced alveolar echinococcosis. Recently, the application of ELRA for liver malignances has gained more attention. However, standardization of clinical practice norms and international consensus are still lacking. The prognostic impact in these oncologic patients also needs further evaluation. In this review, we summarized the principles and recent progresses on ELRA.
Asunto(s)
Neoplasias Hepáticas , Trasplante de Hígado , Humanos , Hepatectomía/efectos adversos , Neoplasias Hepáticas/cirugía , Trasplante de Hígado/efectos adversos , ConsensoRESUMEN
Tertiary lymphoid structure (TLS) can predict the prognosis and sensitivity of tumors to immune checkpoint inhibitors (ICIs) therapy, whether it can be noninvasively predicted by radiomics in hepatocellular carcinoma with liver transplantation (HCC-LT) has not been explored. In this study, it is found that intra-tumoral TLS abundance is significantly correlated with recurrence-free survival (RFS) and overall survival (OS). Tumor tissues with TLS are characterized by inflammatory signatures and high infiltration of antitumor immune cells, while those without TLS exhibit uncontrolled cell cycle progression and activated mTOR signaling by bulk and single-cell RNA-seq analyses. The regulators involved in mTOR signaling (RHEB and LAMTOR4) and S-phase (RFC2, PSMC2, and ORC5) are highly expressed in HCC with low TLS. In addition, the largest cohort of HCC patients is studied with available radiomics data, and a classifier is built to detect the presence of TLS in a non-invasive manner. The classifier demonstrates remarkable performance in predicting intra-tumoral TLS abundance in both training and test sets, achieving areas under receiver operating characteristic curve (AUCs) of 92.9% and 90.2% respectively. In summary, the absence of intra-tumoral TLS abundance is associated with mTOR signaling activation and uncontrolled cell cycle progression in tumor cells, indicating unfavorable prognosis in HCC-LT.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Trasplante de Hígado , Transducción de Señal , Serina-Treonina Quinasas TOR , Estructuras Linfoides Terciarias , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Pronóstico , Masculino , Estudios Retrospectivos , Trasplante de Hígado/métodos , Persona de Mediana Edad , Femenino , Estructuras Linfoides Terciarias/genética , Transducción de Señal/genética , Adulto , Anciano , Análisis de SupervivenciaRESUMEN
BACKGROUND: Liver transplantation (LT) is the "cure" therapy for patients with hepatocellular carcinoma (HCC). However, some patients encounter HCC recurrence after LT. Unfortunately, there is no effective methods to identify the LT patients who have high risk of HCC recurrence and would benefit from adjuvant targeted therapy. The present study aimed to establish a scoring system to predict HCC recurrence of HCC patients after LT among the Chinese population, and to evaluate whether these patients are suitable for adjuvant targeted therapy. METHODS: Clinical data of HCC patients who underwent LT from March 2015 to June 2019 were retrospectively collected and analyzed. RESULTS: A total of 201 patients were included in the study. The multivariate Cox analysis suggested that preoperative alpha-fetoprotein (AFP) > 200 µg/L (HR = 2.666, 95% CI: 1.515-4.690; P = 0.001), glutamyl transferase (GGT) > 96 U/L (HR = 1.807, 95% CI: 1.012-3.224; P = 0.045), and exceeding the Hangzhou criteria (HR = 2.129, 95% CI: 1.158-3.914; P = 0.015) were independent risk factors for poor disease-free survival (DFS) in patients with HCC who underwent LT. We established an AFP-GGT-Hangzhou (AGH) scoring system based on these factors, and divided cases into high-, moderate-, and low-risk groups. The differences in overall survival (OS) and disease-free survival (DFS) rates among the three groups were significant (P < 0.05). The efficacy of the AGH scoring system to predict DFS was better than that of the Hangzhou criteria, UCSF criteria, Milan criteria, and TNM stage. Only in the high-risk group, we found that lenvatinib significantly improved prognosis compared with that of the control group (P < 0.05). CONCLUSIONS: The AGH scoring system provides a convenient and effective way to predict HCC recurrence after LT in HCC patients in China. Patients with a high-risk AGH score may benefit from lenvatinib adjuvant therapy after LT.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Trasplante de Hígado , Humanos , Carcinoma Hepatocelular/cirugía , Trasplante de Hígado/efectos adversos , Neoplasias Hepáticas/cirugía , alfa-Fetoproteínas , Supervivencia sin Enfermedad , Estudios Retrospectivos , Recurrencia Local de Neoplasia/epidemiología , Factores de RiesgoAsunto(s)
Neoplasias Hepáticas , Trasplante de Hígado , Neoplasias , Humanos , Adulto , Niño , Hígado/cirugía , Hepatectomía , Aloinjertos , Neoplasias Hepáticas/cirugíaRESUMEN
Hepatectomy is still the major curative treatment for patients with liver malignancies. However, it is still a big challenge to remove the tumors in the central posterior area, especially if their location involves the retrohepatic inferior vena cava (RHIVC) and hepatic veins. Ex vivo liver resection and auto-transplantation (ELRA), a hybrid technique of the traditional liver resection and transplantation, has brought new hope to these patients and therefore becomes a valid alternative to liver transplantation. Due to its technical difficulty, ELRA is still concentrated in a few hepatobiliary centers that have experienced surgeons in both liver resection and liver transplantation. The efficacy and safety of this technique has already been demonstrated in the treatment of benign liver diseases, especially in the advanced alveolar echinococcosis. Recently, the application of ELRA for liver malignances has gained more attention. However, standardization of clinical practice norms and international consensus are still lacking. The prognostic impact in these oncologic patients also needs further evaluation. In this review, we summarized the principles and recent progresses on ELRA.
RESUMEN
Background and Objective: Tacrolimus, a calcineurin inhibitor widely used as a potent immunosuppressant to prevent graft rejection, exhibits nonlinear kinetics in patients with kidney transplantation and nephrotic syndrome. However, whether nonlinear drug metabolism occurs in adult patients undergoing liver transplantation remains unclear, as do the main underlying mechanisms. Therefore, here we aimed to further confirm the characteristics of nonlinearity through a large sample size, and determine the potential influence of nonlinearity and its possible mechanisms. Methods: In total, 906 trough concentrations from 176 adult patients (150 men/26 women; average age: 50.68 ± 9.71 years, average weight: 64.54 ± 11.85 kg after first liver transplantation) were included in this study. Population pharmacokinetic analysis was performed using NONMEM®. Two modeling strategies, theory-based linear compartmental and nonlinear Michaelis-Menten (MM) models, were evaluated and compared. Potential covariates were screened using a stepwise approach. Bootstrap, prediction-, and simulation-based diagnostics (prediction-corrected visual predictive checks) were performed to determine model stability and predictive performance. Finally, Monte Carlo simulations based on the superior model were conducted to design dosing regimens. Results: Postoperative days (POD), Aspartate aminotransferase (AST), daily tacrolimus dose, triazole antifungal agent (TAF) co-therapy, and recipient CYP3A5*3 genotype constituted the main factors in the theory-based compartmental final model, whereas POD, Total serum bilirubin (TBIL), Haematocrit (HCT), TAF co-therapy, and recipient CYP3A5*3 genotype were important in the nonlinear MM model. The theory-based final model exhibited 234 L h-1 apparent plasma clearance and 11,000 L plasma distribution volume. The maximum dose rate (V max ) of the nonlinear MM model was 6.62 mg day-1; the average concentration at steady state at half-V max (K m ) was 6.46 ng ml-1. The nonlinear MM final model was superior to the theory-based final model and used to propose dosing regimens based on simulations. Conclusion: Our findings demonstrate that saturated tacrolimus concentration-dependent binding to erythrocytes and the influence of daily tacrolimus dose on metabolism may partly contribute to nonlinearity. Further investigation is needed is need to explore the causes of nonlinear pharmacokinetic of tacrolimus. The nonlinear MM model can provide reliable support for tacrolimus dosing optimization and adjustment in adult patients undergoing liver transplantation.
RESUMEN
Cancer is a disease of gene dysregulation, where cells acquire somatic and epigenetic alterations that drive aberrant cellular signaling. These alterations adversely impact transcriptional programs and cause profound changes in gene expression. Interpreting somatic alterations within context-specific transcriptional programs will facilitate personalized therapeutic decisions but is a monumental task. Toward this goal, we develop a partially interpretable neural network model called Chromatin-informed Inference of Transcriptional Regulators Using Self-attention mechanism (CITRUS). CITRUS models the impact of somatic alterations on transcription factors and downstream transcriptional programs. Our approach employs a self-attention mechanism to model the contextual impact of somatic alterations. Furthermore, CITRUS uses a layer of hidden nodes to explicitly represent the state of transcription factors (TFs) to learn the relationships between TFs and their target genes based on TF binding motifs in the open chromatin regions of tumor samples. We apply CITRUS to genomic, transcriptomic, and epigenomic data from 17 cancer types profiled by The Cancer Genome Atlas. CITRUS predicts patient-specific TF activities and reveals transcriptional program variations between and within tumor types. We show that CITRUS yields biological insights into delineating TFs associated with somatic alterations in individual tumors. Thus, CITRUS is a promising tool for precision oncology.
Asunto(s)
Aprendizaje Profundo , Neoplasias , Humanos , Cromatina/genética , Neoplasias/genética , Medicina de Precisión , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Background: Ischemia-reperfusion injury (IRI) severely limits the efficacy and donor source of liver transplantation, and the crucial step in alleviating it is to control inflammation. Itaconic acid is a metabolite produced by intrinsic immune cells (especially macrophages) in the inflammatory state and can promote inflammation subsidence. However, its role in liver ischemia-reperfusion is insufficiently clarified. Methods: A mouse liver ischemia-reperfusion model was constructed, and blood and liver tissue samples were collected by sequential euthanasia of mice at pre-set time points. Liver function and inflammatory factor concentrations were measured, and HE staining was conducted. In the hypoxia-reoxygenation model, proteins were collected at pre-set time points, and the expression of NF-κB pathway-associated protein and its downstream inflammation-associated protein NLRP3 and caspase-1 were detected by Western blot, immunohistochemistry, and immunofluorescence. The level of P-P65 in the nucleus was detected by immunofluorescence. Results: In the liver ischemia-reperfusion model, liver function and inflammatory factors were dynamically varied with reperfusion time in mice, and itaconic acid significantly modified liver function and inflammatory status during this process. NF-κB pathway activity was dynamically varied during hypoxia-reoxygenation, and itaconic acid significantly inhibited the activity of the pathway and significantly suppressed the expression of its downstream inflammation-related proteins. Conclusions: Itaconic acid inhibits NF-κB pathway activation and reduces the accumulation of P-P65 in the nucleus. In turn, this reduces NLRP3 and caspase-1 expression of downstream inflammation-related proteins, promotes inflammation regression, and attenuates liver IRI.
RESUMEN
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and has a high recurrence rate. Accurate prediction of recurrence risk is urgently required for tailoring personalized treatment programs for individual HCC patients in advance. In this study, we analyzed a gene expression dataset from an HCC cohort with 247 samples and identified five genes including ENY2, GPAA1, NDUFA4L2, NEDD9, and NRP1 as the variables for the prediction of HCC recurrence, especially the early recurrence. The Cox model and risks score were validated in two public HCC cohorts (GSE76427 and The Cancer Genome Atlas (TCGA)) and one cohort from Huashan Hospital, which included a total of 641 samples. Moreover, the multivariate Cox regression analysis revealed that the risk score could serve as an independent prognostic factor in the prediction of HCC recurrence. In addition, we found that ENY2, GPAA1, and NDUFA4L2 were significantly upregulated in HCC of the two validation cohorts, and ENY2 had significantly higher expression levels than another four genes in malignant cells, suggesting that ENY2 might play key roles in malignant cells. The cell line analysis revealed that ENY2 could promote cell cycle progression, cell proliferation, migration, and invasion. The functional analysis of the genes correlated with ENY2 revealed that ENY2 might be involved in telomere maintenance, one of the fundamental hallmarks of cancer. In conclusion, our data indicate that ENY2 may regulate the malignant phenotypes of HCC via activating telomere maintenance.
RESUMEN
Currently, chemokines and their receptors, CXCL12-CXCR4 and CCL21-CCR7 axes, are deemed vital factors in the modulation of angiogenesis and are crucial for the growth and development of liver cancer. Tumor-derived DNA can be recognized by immune cells to induce an autoimmune response. In this study, we demonstrated the mechanism of tumor-derived DNA on the CXCL12-CXCR4 and CCL21-CCR7 axes of hepatocellular carcinoma (HCC) cells and the regulatory effect of sinomenine hydrochloride. Tumor-derived DNA was separated from HCCLM cell lines. Tumor-derived DNA was transfected into SK-Hep1 cells by Lipofectamine 2000. We found that sinomenine hydrochloride reduced the expression of CXCR4, CXCR12, CCR7, and CCL21 in HCC cells, suppressed the growth and invasion of HCC cells, and increased apoptosis. In contrast to the controls, the protein expressions of CXCR4, CXCL12, CCR7, CCL21, P-ERK1/2, MMP-9, and MMP-2 in SK-Hep1 cells were significantly increased after transfection of tumor-derived DNA, while the increase was reversed by sinobine hydrochloride. Acid sinomenine interferes with tumor-derived DNA and affects ERK/MMP signaling via the CXCL12/CXCR4 axis in HCC cells. CXCR4 siRNA and CCR7 siRNA attenuated tumor-derived DNA activation of ERK1/2/MMP2/9 signaling pathways in HCC cells. CXCR4-oe and CCR7-OE enhance the stimulation of erK1/2/MMP2/9 signaling pathway by tumor-derived DNA in HCC cells. Tumor-derived DNA reduced apoptosis and increased invasion of SK-Hep1 cells by CXCL12-CXCR4 axis and CCL21-CCR7 axis, and sinobine hydrochloride reversed this regulation. These results strongly suggest that tumor-derived DNA can increase the growth and invasion of oncocytes via the upregulation of the expression of CXCL12-CXCR4 and CCL21-CCR7 axis and through ERK1/2/MMP2/9 signaling pathway in HCC cells, and sinobine hydrochloride can inhibit this signaling pathway, thus inhibiting HCC cells. These results provide new potential therapeutic targets for blocking the progression of HCC induced by CXCL12-CXCR4 axis and CCL21-CCR7.
RESUMEN
MOTIVATION: Identifying cell types and their abundances and how these evolve during tumor progression is critical to understanding the mechanisms of metastasis and identifying predictors of metastatic potential that can guide the development of new diagnostics or therapeutics. Single-cell RNA sequencing (scRNA-seq) has been especially promising in resolving heterogeneity of expression programs at the single-cell level, but is not always feasible, e.g. for large cohort studies or longitudinal analysis of archived samples. In such cases, clonal subpopulations may still be inferred via genomic deconvolution, but deconvolution methods have limited ability to resolve fine clonal structure and may require reference cell type profiles that are missing or imprecise. Prior methods can eliminate the need for reference profiles but show unstable performance when few bulk samples are available. RESULTS: In this work, we develop a new method using reference scRNA-seq to interpret sample collections for which only bulk RNA-seq is available for some samples, e.g. clonally resolving archived primary tissues using scRNA-seq from metastases. By integrating such information in a Quadratic Programming framework, our method can recover more accurate cell types and corresponding cell type abundances in bulk samples. Application to a breast tumor bone metastases dataset confirms the power of scRNA-seq data to improve cell type inference and quantification in same-patient bulk samples. AVAILABILITY AND IMPLEMENTATION: Source code is available on Github at https://github.com/CMUSchwartzLab/RADs.
Asunto(s)
Neoplasias de la Mama , Análisis de la Célula Individual , Neoplasias de la Mama/genética , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , RNA-Seq , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodosRESUMEN
MOTIVATION: Cancer develops through a process of clonal evolution in which an initially healthy cell gives rise to progeny gradually differentiating through the accumulation of genetic and epigenetic mutations. These mutations can take various forms, including single-nucleotide variants (SNVs), copy number alterations (CNAs) or structural variations (SVs), with each variant type providing complementary insights into tumor evolution as well as offering distinct challenges to phylogenetic inference. RESULTS: In this work, we develop a tumor phylogeny method, TUSV-ext, which incorporates SNVs, CNAs and SVs into a single inference framework. We demonstrate on simulated data that the method produces accurate tree inferences in the presence of all three variant types. We further demonstrate the method through application to real prostate tumor data, showing how our approach to coordinated phylogeny inference and clonal construction with all three variant types can reveal a more complicated clonal structure than is suggested by prior work, consistent with extensive polyclonal seeding or migration. AVAILABILITY AND IMPLEMENTATION: https://github.com/CMUSchwartzLab/TUSV-ext. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Algoritmos , Evolución Clonal , Humanos , Neoplasias/genética , Nucleótidos , Filogenia , Programas InformáticosRESUMEN
Background: To evaluate the difference and efficacy of two donor liver procurement methods for treatment of pediatric acute liver failure (PALF) by living donor liver transplantation (LDLT). Methods: A total of 17 patients (12 men, 5 women) with PALF who underwent LDLT in our hospital between October 2016 and October 2020, and prognostic efficacy of donors and recipients using two donor liver procurement methods were analyzed. Results: The donors and recipients were both divided into laparoscopic (7 cases) and open (10 cases) donor liver procurement groups. In the recipients, two deaths occurred in the laparoscopic group and one in the open group, and there were three postoperative complications in the laparoscopic group and six in the open group. The cumulative 1-year and 3-year survival rates in the laparoscopic group and the open group were 80.0% and 85.7% separately. There was no difference in the postoperative survival and complications rates between the two groups. In the donors, the operation time, postoperative hospital stay, and blood loss of the laparoscopic group was significantly reduced compared with the open group (P ≤ 0.01). No death or serious complication occurred in either donor group. Conclusion: Laparoscopic donor liver procurement is worth recommending than open donor liver procurement for treatment of PALF combined with LDLT in qualified transplant centers.
RESUMEN
Hepatocellular carcinoma (HCC) is a fatal malignancy which has insufficient treatment options. Long non-coding RNA (lncRNA) GASAL1 was discovered to be conspicuously up-regulated in HCC. However, the study on the role of GASAL1 in HCC reamins limited. Our study aimed at exploring the role and mechanism of GASAL1 in HCC. RT-qPCR or Western blot was conducted to examine the expression of RNAs or proteins. Functional assays were carried out to investigate the impact of GASAL1, USP10, and PCNA on HCC cells. Mechanism assays were performed to fathom out the relationship among GASAL1, miR-193b-5p, USP10, and PCNA. In vivo assays were also employed to determine the role of GASAL1 in HCC tumor growth and metastases. According to the data collected, GASAL1 displayed a high expression in HCC cells and GASAL1 knockdown led to impeded cell proliferation and migration, as well as tumor progression. A series of mechanism analysis demonstrated GASAL1 could sponge miR-193b-5p to raise the expression of USP10. Moreover, USP10 could induce PCNA deubiquitination to promote HCC cell growth. To conclude, GASAL1 plays an oncogenic role in HCC. GASAL1 could up-regulate USP10 via competitively binding to miR-193b-5p. And USP10 could strengthen cell proliferative and migratory abilities through deubiquitinating PCNA.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Hepáticas/patología , MicroARNs/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismoRESUMEN
Application of artificial intelligence (AI) in precision oncology typically involves predicting whether the cancer cells of a patient (previously unseen by AI models) will respond to any of a set of existing anticancer drugs, based on responses of previous training cell samples to those drugs. To expand the repertoire of anticancer drugs, AI has also been used to repurpose drugs that have not been tested in an anticancer setting, i.e., predicting the anticancer effects of a new drug on previously unseen cancer cells de novo. Here, we report a computational model that addresses both of the above tasks in a unified AI framework. Our model, referred to as deep learning-based graph regularized matrix factorization (DeepGRMF), integrates neural networks, graph models, and matrix-factorization techniques to utilize diverse information from drug chemical structures, their impact on cellular signaling systems, and cancer cell cellular states to predict cell response to drugs. DeepGRMF learns embeddings of drugs so that drugs sharing similar structures and mechanisms of action (MOAs) are closely related in the embedding space. Similarly, DeepGRMF also learns representation embeddings of cells such that cells sharing similar cellular states and drug responses are closely related. Evaluation of DeepGRMF and competing models on Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets show its superiority in prediction performance. Finally, we show that the model is capable of predicting effectiveness of a chemotherapy regimen on patient outcomes for the lung cancer patients in The Cancer Genome Atlas (TCGA) dataset*.
Asunto(s)
Aprendizaje Profundo , Neoplasias , Preparaciones Farmacéuticas , Inteligencia Artificial , Biología Computacional , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Medicina de PrecisiónRESUMEN
AIM: The purpose of this study was to investigate the effect of CYP3A7, CYP3A4, and CYP3A5 genetic polymorphisms in liver transplant recipients and donors on tacrolimus concentrations in the early stages after liver transplantation. METHODS: One hundred and thirty-eight liver transplant recipients and matched donors were genotyped for CYP3A7 (rs10211 and rs2257401), CYP3A4 (rs4646437 and rs2242480), and CYP3A5*3 (rs776746) polymorphisms. The relationships between dose-adjusted trough concentrations (C0/D) of tacrolimus and corresponding genotypes were investigated. RESULTS: Recipient CYP3A polymorphisms were associated with tacrolimus concentrations. The CYP3A7 rs10211 AA carriers (186.2 vs 90.5, p < 0.001), CYP3A4 rs4646437 CC carriers (184.0 vs 88.8, p < 0.001), CYP3A4*1G rs2242480 CC carriers (189.8 vs 99.7, p < 0.001), and CYP3A5*3 rs776746 GG carriers (197.3 vs 86.0, p < 0.001) had an almost twofold increase in the tacrolimus C0/D compared to that of the non-carriers. We further investigated the effect of the combination of recipient (intestinal) and donor (hepatic) genotypes on tacrolimus concentrations. Regardless of the genotype of the matched donor, CYP3A7 rs10211, CYP3A4*1G (rs2242480), and CYP3A5*3 (rs776746) polymorphisms of recipients could affect tacrolimus concentrations. For the CYP3A4 rs4646437 polymorphisms, when the donor carried CYP3A4 rs4646437 CC, the recipient CYP3A4 rs4646437 polymorphism was associated with the C0/D of tacrolimus, and when the donor carried CYP3A4 rs4646437 CT/TT genotype, the recipient CYP3A4 rs4646437 polymorphism also affected on tacrolimus C0/D, although the effect was not significant. CONCLUSION: The large inter-individual variation in tacrolimus concentrations in the early stages after liver transplantation is influenced by genetic polymorphisms of CYP3A7, CYP3A4, and CYP3A5. Recipient (intestinal) CYP3A7, CYP3A4, and CYP3A5 polymorphisms seem to contribute more to such variation than donors. Therefore, the detection of CYP3A polymorphisms in recipients could help to predict the tacrolimus starting dose in the early stages after liver transplantation.
Asunto(s)
Citocromo P-450 CYP3A/genética , Trasplante de Hígado , Tacrolimus/sangre , Adulto , Femenino , Frecuencia de los Genes , Humanos , Inmunosupresores/sangre , Inmunosupresores/uso terapéutico , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Tacrolimus/uso terapéutico , Donantes de TejidosRESUMEN
PURPOSE: Hepatocellular carcinoma (HCC) accounts for more than 80% of primary liver cancers and is one of the leading causes of cancer-related death in many countries. Cancer cell-derived exosomes are shown to mediate communications between cancer cells and the microenvironment, promoting tumorigenesis. Hedgehog signaling pathway plays important roles in cancer development of HCC. METHODS: Exosomes were isolated from culture medium of HCC cell lines PLC/PRF/5 and MHCC-97H and were found to promote cancer cell growth measured with cell proliferation and colony formation assay. HCC cells cultured with cancer cell-derived exosome had increased cancer stem cell (CSC) population demonstrated by increased cell sphere formation CSC marker expressions. Hedgehog protein Shh was found to be highly expressed in these two HCC cell lines and preferably carried by exosomes. When Shh was knocked down with shRNA, the resulting exosomes had a reduced effect on promoting cancer cell growth or CSC population increase compared to normal cell-derived exosomes. RESULTS: The ability of PLC/PRF/5 cells to form tumor in a xenograft model was increased by the addition of the exosomes from control cancer cells but not the exosomes from Shh knocked down cancer cells. Finally, the higher plasma Exo-Shh levels were associated with later tumor stages, higher histological grades, multiple tumors, and higher recurrence rates. CONCLUSION: This study demonstrated that HCC cells secreted Shh via exosome and promote tumorigenesis through the activated Hedgehog pathway.
RESUMEN
Aneuploidy and whole genome duplication (WGD) events are common features of cancers associated with poor outcomes, but the ways they influence trajectories of clonal evolution are poorly understood. Phylogenetic methods for reconstructing clonal evolution from genomic data have proven a powerful tool for understanding how clonal evolution occurs in the process of cancer progression, but extant methods so far have limited the ability to resolve tumor evolution via ploidy changes. This limitation exists in part because single-cell DNA-sequencing (scSeq), which has been crucial to developing detailed profiles of clonal evolution, has difficulty in resolving ploidy changes and WGD. Multiplex interphase fluorescence in situ hybridization (miFISH) provides a more unambiguous signal of single-cell ploidy changes but it is limited to profiling small numbers of single markers. Here, we develop a joint clustering method to combine these two data sources with the goal of better resolving ploidy changes in tumor evolution. We develop a probabilistic framework to maximize the probability of latent variables given the pre-clustered datasets, which we optimize via Markov chain Monte Carlo sampling combined with linear regression. We validate the method by using simulated data derived from a glioblastoma (GBM) case profiled by both scSeq and miFISH. We further apply the method to two GBM cases with scSeq and miFISH data by reconstructing a phylogenetic tree from the joint clustering results, demonstrating their synergistic value in understanding how focal copy number changes and WGD events can collectively contribute to tumor progression.
Asunto(s)
Neoplasias Encefálicas/genética , Biología Computacional/métodos , Glioblastoma/genética , Hibridación Fluorescente in Situ/métodos , Análisis de la Célula Individual/métodos , Anafase , Aneuploidia , Evolución Clonal , Análisis por Conglomerados , Evolución Molecular , Humanos , Cadenas de Markov , Método de Montecarlo , Filogenia , Análisis de Secuencia de ARNRESUMEN
MOTIVATION: Computational reconstruction of clonal evolution in cancers has become a crucial tool for understanding how tumors initiate and progress and how this process varies across patients. The field still struggles, however, with special challenges of applying phylogenetic methods to cancers, such as the prevalence and importance of copy number alteration (CNA) and structural variation events in tumor evolution, which are difficult to profile accurately by prevailing sequencing methods in such a way that subsequent reconstruction by phylogenetic inference algorithms is accurate. RESULTS: In this work, we develop computational methods to combine sequencing with multiplex interphase fluorescence in situ hybridization to exploit the complementary advantages of each technology in inferring accurate models of clonal CNA evolution accounting for both focal changes and aneuploidy at whole-genome scales. By integrating such information in an integer linear programming framework, we demonstrate on simulated data that incorporation of FISH data substantially improves accurate inference of focal CNA and ploidy changes in clonal evolution from deconvolving bulk sequence data. Analysis of real glioblastoma data for which FISH, bulk sequence and single cell sequence are all available confirms the power of FISH to enhance accurate reconstruction of clonal copy number evolution in conjunction with bulk and optionally single-cell sequence data. AVAILABILITY AND IMPLEMENTATION: Source code is available on Github at https://github.com/CMUSchwartzLab/FISH_deconvolution. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.