RESUMEN
As a flocculant of sewage sludge, cationic polyacrylamide (CPAM) enters the environment with sludge and exists for a long time, posing serious threats to the environment. Due to the environmental friendliness and high efficiency in the process of organic solid waste treatment, hyperthermophilic composting (HTC) has received increasing attention. However, it is still unclear whether the HTC process can effectively remove CPAM from sludge. In this study, the effects of HTC and conventional thermophilic composting (CTC) on CPAM in sludge were compared and analyzed. At the end of HTC and CTC, the concentrations of CPAM were 278.96 mg kg-1 and 533.89 mg kg-1, respectively, and the removal rates were 72.17% and 46.61%, respectively. The coupling effect of thermophilic microorganisms and high temperature improved the efficiency of HTC and accelerated the biodegradation of CPAM. The diversity and composition of microbial community changed dramatically during HTC. Geobacillus, Thermobispora, Pseudomonas, Brevundimonas, and Bacillus were the dominant bacteria responsible for the high HTC efficiency. To our knowledge, this is the first study in which CPAM-containing sludge is treated using HTC. The ideal performance and the presence of key microorganisms revealed that HTC is feasible for the treatment of CPAM-containing sludge.
Asunto(s)
Resinas Acrílicas , Compostaje , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Temperatura , Archaea , Aceleración , SueloRESUMEN
In the present work, palygorskite (PAL) supported Co-Fe oxides (CoFe@PAL) were prepared and used as a peroxymonosulfate (PMS) activator for removal of rhodamine B (RhB) in water. The results showed that CoFe@PAL prepared at impregnation solution of 50 g L-1 and calcination temperature of 500 °C showed the best catalytic performance. The removal efficiency of RhB (10 mg L-1) by PMS (0.1 mmol L-1) activated with CoFe@PAL (1 g L-1) was above 98% within 60 min. The effects of various environmental factors including initial pH, humic acid (HA) and inorganic anions on the removal effect were simultaneously investigated. The radical quenching experiments and EPR characterization revealed that ËOH, SO4Ë-, O2Ë- and 1O2 radicals existed in the CoFe@PAL/PMS system simultaneously. The intermediates during RhB degradation were analyzed by LC-MS and possible degradation pathways of RhB were proposed. Moreover, CoFe@PAL exhibited superior stability and reusability.