Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
J Ethnopharmacol ; 331: 118273, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38703874

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Uncaria rhynchophylla (Miq.) Miq.ex Havil. was a classical medicinal plant exhibiting the properties of extinguishing wind, arresting convulsions, clearing heat and pacifying the liver. Clinically, it could be utilized for the treatment of central nervous system-related diseases, such as Alzheimer's disease. U. rhynchophylla (UR) and its major ingredient alkaloid compounds (URA) have been proved to exert significant neuroprotective effects. However, the potential mechanism aren't fully understood. AIM OF THE STUDY: This study systematically examined the therapeutic effects of URA on AD pathology in APP-PS1 mice, and revealed the potential mechanism of action. MATERIALS AND METHODS: The cognitive ability was evaluated by morris water maze test in APP-PS1 mice. The H&E staining was used to observe the tissue pathological changes. The ELISA kits were used to detect the level of inflammatory factors. The flow cytometry was used to analyze the percentage of CD4+ effector T cells (Teffs) in spleen. The immunofluorescent staining was performed to count the Teffs and microglia in brain. The protein expression was analyzed by western blot. In vitro, the lymphocyte proliferation induced by ConA was performed by CCK-8 kits. The IFN-γ, IL-17, and TNF-α production were detected by ELISA kits. The effects of URA on glycolysis and the involvement of PI3K/Akt/mTOR signaling pathway was analyzed by Lactic Acid assay kit and western blot in ConA-induced naive T cell. RESULTS: URA treatment improved AD pathology effectively as demonstrated by enhanced cognitive ability, decreased Aß deposit and Tau phosphorylation, as well as reduced neuron apoptosis. Also, the neuroinflammation was significantly alleviated as evidenced by decreased IFN-γ, IL-17 and increased IL-10, TGF-ß. Notably, URA treatment down-regulated the percentage of Teffs (Th1 and Th17) in spleen, and reduced the infiltration of Teffs and microglia in brain. Meanwhile, the Treg cell was up-regulated both in spleen and brain. In vitro, URA was capable of attenuating the spleen lymphocyte proliferation and release of inflammatory factors provoked by ConA. Interestingly, glycolysis was inhibited by URA treatment as evidenced by the decrease in Lactic Acid production and expression of HK2 and GLUT1 via regulating PI3K/Akt/mTOR signaling pathway in ConA-induced naive T cell. CONCLUSION: This study proved that URA could improve AD pathology which was possibly attributable to the restraints of CD4+ T cell mediated neuroinflammation via inhibiting glycolysis.

2.
Sci Total Environ ; 927: 172169, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582126

RESUMEN

A large amount of metal tailings causes many environmental issues. Thus, the techniques for their ecological restoration have garnered extensive attention. However, they are still in the exploratory stage. Biological soil crusts (BSCs) are a coherent layer comprising photoautotrophic organisms, heterotrophic organisms and soil particles. They are crucial in global terrestrial ecosystems and play an equal importance in metal tailings. We summarized the existing knowledge on BSCs growing on metal tailings. The main photosynthetic organisms (cyanobacteria, eukaryotic algae, lichens, and mosses) of BSCs exhibit a high heavy metal(loid) (HM) tolerance. BSCs also have a strong adaptability to other adverse conditions in tailings, such as poor structure, acidification, and infertility. The literature about tailing BSCs has been rapidly increasing, particularly after 2022. The extensive literature confirms that the BSCs distributed on metal tailings, including all major types of metal tailings in different climatic regisions, are common. BSCs perform various ecological functions in tailings, including HM stress reduction, soil structure improvement, soil nutrient increase, biogeochemical cycle enhancement, and microbial community restoration. They interact and accelerate revegetation of tailings (at least in the temperate zone) and soil formation. Restoring tailings by accelerating/inducing BSC formation (e.g., resource augmentation and inoculation) has also attracted attention and achieved small-scale on-site application. However, some knowledge gaps still exist. The potential areas for further research include the relation between BSCs and HMs, large-scale quantification of tailing BSCs, application of emerging biological techniques, controlled laboratory experiments, and other restoration applications.


Asunto(s)
Restauración y Remediación Ambiental , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Suelo/química , Contaminantes del Suelo/análisis , Restauración y Remediación Ambiental/métodos , Metales Pesados/análisis , Ecosistema , Metales/análisis , Minería
3.
Food Chem Toxicol ; 188: 114666, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621509

RESUMEN

This work was designed to investigate the neurotoxic effects of the typical plasticizer dibutyl phthalate (DBP) using zebrafish larvae as a model. The results of exhibited that zebrafish larvae exposed to DBP at concentrations of 5 µg/L and 10 µg/L exhibited brain malformations (24 h) and behavioral abnormalities (72 h). After 72 h of exposure to DBP, microglia in the brain were over-activated, reactive oxygen species (ROS) formation was increased, and apoptosis was observed. Meanwhile, it was found that neurons exhibited impaired mitochondrial structure, absent mitochondrial membrane potential and up-regulated autophagy. Further comprehensive biochemical analyses and RNA-Seq, validated by RT-qPCR, glutamate metabolism and PPAR signaling pathway were significantly enriched in the DBP stress group, this may be the main reason for the disruption of glycolysis/gluconeogenesis processes and the reduction of energy substrates for the astrocyte-neuron lactate shuttle (ANLS). In addition, the DBP-exposed group showed aberrant activation of endoplasmic reticulum (ER) stress signaling pathway, which may be related to ROS as well as neuronal apoptosis and autophagy. In conclusion, DBP-induced neurotoxicity may be the combined result of insufficient neuronal energy acquisition, damage to mitochondrial structure, apoptosis and autophagy. These results provide a theoretical basis for understanding the neurotoxic effects of DBP.


Asunto(s)
Apoptosis , Dibutil Ftalato , Larva , Neuronas , Pez Cebra , Animales , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Dibutil Ftalato/toxicidad , Larva/efectos de los fármacos , Larva/metabolismo , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Metabolismo Energético/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Autofagia/efectos de los fármacos , Plastificantes/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos
4.
J Trop Pediatr ; 70(3)2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38670794

RESUMEN

OBJECTIVE: This study aimed to use machine learning to evaluate the risk factors of seizures and develop a model and nomogram to predict seizures in children with coronavirus disease 2019 (COVID-19). MATERIAL AND METHODS: A total of 519 children with COVID-19 were assessed to develop predictive models using machine learning algorithms, including extreme gradient boosting (XGBoost), random forest (RF) and logistic regression (LR). The performance of the models was assessed using area under the receiver operating characteristic curve (AUC) values. Importance matrix plot and SHapley Additive exPlanations (SHAP) values were calculated to evaluate feature importance and to show the visualization results. The nomogram and clinical impact curve were used to validate the final model. RESULTS: Two hundred and seventeen children with COVID-19 had seizures. According to the AUC, the RF model performed the best. Based on the SHAP values, the top three most important variables in the RF model were neutrophil percentage, cough and fever duration. The nomogram and clinical impact curve also verified that the RF model possessed significant predictive value. CONCLUSIONS: Our research indicates that the RF model demonstrates excellent performance in predicting seizures, and our novel nomogram can facilitate clinical decision-making and potentially offer benefit for clinicians to prevent and treat seizures in children with COVID-19.


Asunto(s)
COVID-19 , Aprendizaje Automático , Nomogramas , SARS-CoV-2 , Convulsiones , Humanos , COVID-19/complicaciones , COVID-19/diagnóstico , Convulsiones/etiología , Convulsiones/diagnóstico , Femenino , Masculino , Niño , Preescolar , Factores de Riesgo , Curva ROC , Modelos Logísticos , Lactante
5.
Nat Prod Bioprospect ; 14(1): 20, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436812

RESUMEN

Scutellarin is widely distributed in Scutellaria baicalensis, family Labiatae, and Calendula officinalis, family Asteraceae, and belongs to flavonoids. Scutellarin has a wide range of pharmacological activities, it is widely used in the treatment of cerebral infarction, angina pectoris, cerebral thrombosis, coronary heart disease, and other diseases. It is a natural product with great research and development prospects. In recent years, with in-depth research, researchers have found that wild scutellarin also has good therapeutic effects in anti-tumor, anti-inflammatory, anti-oxidation, anti-virus, treatment of metabolic diseases, and protection of kidney. The cancer treatment involves glioma, breast cancer, lung cancer, renal cancer, colon cancer, and so on. In this paper, the sources, pharmacological effects, in vivo and in vitro models of scutellarin were summarized in recent years, and the current research status and future direction of scutellarin were analyzed.

6.
mBio ; 15(4): e0240723, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38456703

RESUMEN

The inactivated whole-virion vaccine, CoronaVac, is one of the most widely used coronavirus disease 2019 (COVID-19) vaccines worldwide. There is a paucity of data indicating the durability of the immune response and the impact of immune imprinting induced by CoronaVac upon Omicron infection. In this prospective cohort study, 41 recipients of triple-dose CoronaVac and 14 unvaccinated individuals were recruited. We comprehensively profiled adaptive immune parameters in both groups, including spike-specific immunoglobulin (Ig) G and IgA titers, neutralizing activity, B cells, circulating follicular helper T (cTfh) cells, CD4+ and CD8+ T cells, and their memory subpopulations at 12 months after the third booster dose and at 4 and 20 weeks after Omicron BA.5 infection. Twelve months after the third CoronaVac vaccination, spike-specific antibodies and cellular responses were detectable in most vaccinated individuals. BA.5 infection significantly augmented the magnitude, cross-reactivity, and durability of serum neutralization activities, Fc-mediated phagocytosis, nasal spike-specific IgA responses, memory B cells, activated cTfh cells, memory CD4+ T cells, and memory CD8+ T cells for both the ancestral strain and Omicron subvariants, compared to unvaccinated individuals. Notably, the increase in BA.5-specific immunity after breakthrough infection was consistently comparable to or higher than that of the ancestral strain, suggesting no evidence of immune imprinting. Immune landscape analyses showed that vaccinated individuals have better synchronization of multiple immune components than unvaccinated individuals upon heterologous infection. Our data provide detailed insight into the protective role of the inactivated COVID-19 vaccine in shaping humoral and cellular immunity to Omicron infection. IMPORTANCE: There is a paucity of data indicating the durability of the immune response and the impact of immune imprinting induced by CoronaVac upon Omicron breakthrough infection. In this prospective cohort study, the anti-severe acute respiratory syndrome coronavirus 2 adaptive responses were analyzed before and after the Omicron BA.5 infection. Our data provide detailed insight into the protective role of the inactivated COVID-19 vaccine in shaping humoral and cellular immune responses to heterologous Omicron infection. CLINICAL TRIAL: This study is registered with ClinicalTrials.gov as NCT05680896.


Asunto(s)
COVID-19 , Inmunidad Mucosa , Vacunas de Productos Inactivados , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , Infección Irruptiva , Linfocitos T CD8-positivos , Estudios Prospectivos , Inmunoglobulina G , Inmunoglobulina A , Anticuerpos Antivirales , Anticuerpos Neutralizantes
7.
J Inflamm Res ; 17: 1707-1720, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510374

RESUMEN

Objective: Diabetic foot ulcer (DFU) impairs the quality of life of diabetic patients and overburdens healthcare systems and society. It is crucial to comprehend the pathophysiology of DFU and develop effective treatment strategies. The aim of this study was to to evaluate the therapeutic potential of Lactobacillus Plantarum (LP) on wound healing in DFU and to explore the underlying mechanisms. Methods: To investigate the effects of LP on wound healing, human umbilical vein endothelial cells (HUVECs) were treated with advanced glycation end products (AGEs) and used to assess cell viability, migration, and pyroptosis using CCK-8, cell scratch, and flow cytometry. The levels of IL-1ß and IL-18 were measured by ELISA. The expression of NLRP3, caspase-1 p20, and GSDMD-N was detected by Western blot. Additionally, NLRP3 inhibitor MCC950 was used to treat a diabetic rat model established by streptozotocin (STZ). Pearson correlation analysis was performed to analyze the relationship between LP and NLRP3, IL-1ß, IL-18 in ulcer tissue. Results: Our data mechanistically demonstrate that AGEs activate the NLRP3/Caspase-1/GSDMD pathway, leading to an increase in the levels of IL-1ß and IL-18 and ultimately promoting cell pyroptosis. Furthermore, we identified that LP inhibits the effects of AGEs by downregulating NLRP3 inflammasome activity. LP facilitated wound healing in diabetic rats and resulted in decreased protein levels of NLRP3 and its downstream target caspase-1 p20. Finally, we observed a negative correlation between LP and NLRP3, IL-1ß, IL-18 in diabetic foot skin tissue. Conclusion: Our findings uncovered a novel role of LP in diabetic foot wound healing via regulation of the NLRP3 inflammasome, suggesting this link as a therapeutic target. In future research, it would be valuable to explore the signaling cascades involved in LP-mediated inhibition of NLRP3 inflammasome activation.

8.
World J Pediatr ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367140

RESUMEN

BACKGROUND: Diarrhea is a common complication of hematopoietic stem cell transplantation (HSCT) and is associated with substantial morbidity, but its etiology is often unknown. Etiologies of diarrhea in this population include infectious causes, chemotherapy- or medication-induced mucosal injury and graft-versus-host disease (GVHD). Distinguishing these potential causes of diarrhea is challenging since diarrheal symptoms are often multifactorial, and the etiologies often overlap in transplant patients. The objectives of this study were to evaluate whether the FilmArray gastrointestinal (GI) panel would increase diagnostic yield and the degree to which pre-transplantation colonization predicts post-transplantation infection. METHODS: From November 2019 to February 2021, a total of 158 patients undergoing HSCT were prospectively included in the study. Stool specimens were obtained from all HSCT recipients prior to conditioning therapy, 28 ± 7 days after transplantation and at any new episode of diarrhea. All stool samples were tested by the FilmArray GI panel and other clinical microbiological assays. RESULTS: The primary cause of post-transplantation diarrhea was infection (57/84, 67.86%), followed by medication (38/84, 45.24%) and GVHD (21/84, 25.00%). Ninety-five of 158 patients were colonized with at least one gastrointestinal pathogen before conditioning therapy, and the incidence of infectious diarrhea was significantly higher in colonized patients (47/95, 49.47%) than in non-colonized patients (10/63, 15.87%) (P < 0.001). Fourteen of 19 (73.68%) patients who were initially colonized with norovirus pre-transplantation developed a post-transplantation norovirus infection. Twenty-four of 62 (38.71%) patients colonized with Clostridium difficile developed a diarrheal infection. In addition, FilmArray GI panel testing improved the diagnostic yield by almost twofold in our study (55/92, 59.78% vs. 30/92, 32.61%). CONCLUSIONS: Our data show that more than half of pediatric patients who were admitted for HSCT were colonized with various gastrointestinal pathogens, and more than one-third of these pathogens were associated with post-transplantation diarrhea. In addition, the FilmArray GI panel can increase the detection rate of diarrheal pathogens in pediatric HSCT patients, but the panel needs to be optimized for pathogen species, and further studies assessing its clinical impact and cost-effectiveness in this specific patient population are also needed.

9.
Adv Mater ; : e2400181, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419474

RESUMEN

Recent electronics-tissues biointefacing technology has offered unprecedented opportunities for long-term disease diagnosis and treatment. It remains a grand challenge to robustly anchor the pressure sensing bioelectronics onto specific organs, since the periodically-varying stress generated by normal biological processes may pose high risk of interfacial failures. Here, a general yet reliable approach is reported to achieve the robust hydrogel interface between wireless pressure sensor and biological tissues/organs, featuring highly desirable mechanical compliance and swelling resistance, despite the direct contact with biofluids and dynamic conditions. The sensor is operated wirelessly through inductive coupling, characterizing minimal hysteresis, fast response times, excellent stability, and robustness, thus allowing for easy handling and eliminating the necessity for surgical extraction after a functional period. The operation of the wireless sensor has been demonstrated with a custom-made pressure sensing model and in vivo intracranial pressure monitoring in rats. This technology may be advantageous in real-time post-operative monitoring of various biological inner pressures after the reconstructive surgery, thus guaranteeing the timely treatment of lethal diseases.

10.
J Biophotonics ; 17(4): e202300473, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38247109

RESUMEN

The only existing approach for assessing the risk of developing acute ischemic stroke (AIS) necessitates that individuals possess a strong understanding of their health status. Our research gathered compelling evidence in favor of our hypothesis, suggesting that the likelihood of developing AIS can be assessed by analyzing the green autofluorescence (AF) of the skin and fingernails. Utilizing machine learning-based analyses of AF images, we found that the area under the curve (AUC) for distinguishing subjects with three risk factors from those with zero, one, or two risk factors was 0.79, 0.76, and 0.75, respectively. Our research has revealed that green AF serves as an innovative biomarker for assessing the risk of developing AIS. Our method is objective, non-invasive, efficient, and economic, which shows great promise to boost a technology for screening natural populations for risk of developing AIS.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Uñas , Factores de Riesgo , Biomarcadores
11.
Sci Total Environ ; 918: 170436, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38281650

RESUMEN

Widespread application of the typical phthalate plasticizers, di (2-ethylhexyl) phthalate (DEHP), poses a serious potential threat to the health of animals and even humans. Previous studies have confirmed the mechanism of DEHP-induced cardiac developmental defects in zebrafish larvae. However, the mechanism of cardiac dysfunction is still unclear. Thus, this work aimed to comprehensively investigate the mechanisms involved in DEHP-induced cardiac dysfunction through computational simulations, in vivo assays in zebrafish, and in vitro assays in cardiomyocytes. Firstly, molecular docking and western blot initially investigated the activating effect of DEHP on Pparg in zebrafish. Although GW9662 (PPARG antagonist) effectively alleviated DEHP-induced cardiac dysfunction and lipid metabolism disorders, it did not restore significant decreases in mitochondrial membrane potential and ATP levels. In vitro assays in cardiomyocytes, DEHP caused overexpression of PPARG and proteins involved in the regulation of Ca2+ homeostasis, and the above abnormalities were effectively alleviated by GW9662, suggesting that the Ca2+ homeostatic imbalance caused by activation of PPARG by DEHP seems to be the main cause of DEHP-induced cardiac dysfunction. To sum up, this work not only refines the mechanism of toxic effects of cardiotoxicity induced by DEHP, but provides an important theoretical basis for enriching the toxicological effects of DEHP.


Asunto(s)
Anilidas , Dietilhexil Ftalato , Cardiopatías , Ácidos Ftálicos , Humanos , Animales , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/metabolismo , Pez Cebra/metabolismo , PPAR gamma/metabolismo , Simulación del Acoplamiento Molecular , Plastificantes/toxicidad , Plastificantes/metabolismo
12.
Pediatr Res ; 95(3): 843-851, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37857845

RESUMEN

BACKGROUND: Studies on mNGS application in pediatric oncology patients, who are at high risk of infection, are quite limited. METHODS: From March 2020 to June 2022, a total of 224 blood samples from 195 pediatric oncology patients who were suspected as bloodstream infections were enrolled in this study. Their clinical and laboratory data were retrospectively reviewed, and the diagnostic performance of mNGS was assessed. RESULTS: Compared to the reference tests, mNGS showed significantly higher sensitivity (89.8% vs 32.5%, P < 0.001) and clinical agreement (76.3% vs 51.3%, P < 0.001) in detecting potential pathogens and distinguishing BSI from non-BSI. Especially, mNGS had an outstanding performance for virus detection, contributing to 100% clinical diagnosed virus. Samples from patients with neutropenia showed higher incidence of bacterial infections (P = 0.035). The most identified bacteria were Escherichia coli, and the overall infections by gram-negative bacteria were significantly more prevalent than those by gram-positive ones (90% vs 10%, P < 0.001). Overall, mNGS had an impact on the antimicrobial regimens' usage in 54.3% of the samples in this study. CONCLUSIONS: mNGS has the advantage of rapid and effective pathogen diagnosis in pediatric oncology patients with suspected BSI, especially for virus. IMPACT: Compared with reference tests, mNGS showed significantly higher sensitivity and clinical agreement in detecting potential pathogens and distinguishing bloodstream infections (BSI) from non-BSI. mNGS is particularly prominent in clinical diagnosed virus detection. The incidence of bacterial infection was higher in patients with neutropenia, and the overall infection rate of Gram-negative bacteria was significantly higher than that of Gram-positive bacteria. mNGS affects the antimicrobial regimens' usage in more than half of patients.


Asunto(s)
Antiinfecciosos , Neoplasias , Neutropenia , Sepsis , Niño , Humanos , Estudios Retrospectivos , Sepsis/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Neutropenia/diagnóstico , Escherichia coli , Neoplasias/complicaciones , Neoplasias/diagnóstico , Sensibilidad y Especificidad
13.
Int J Biol Macromol ; 254(Pt 2): 127789, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37926318

RESUMEN

The quick progress of epigenetic study has kindled new hope for treating many cancers. When it comes to RNA epigenetics, the ac4C acetylation modification is showing promise, whereas N-acetyltransferase 10 plays a wide range of biological functions, has a significant impact on cellular life events, and is frequently highly expressed in many malignant tumors. N-acetyltransferase 10 is an acetyltransferase with important biological involvement in cellular processes and lifespan. Because it is highly expressed in many malignant tumors, it is considered a pro-carcinogenic gene. The review aims to introduce NAT10, summarize the effects of ac4C acetylation on tumor growth from multiple angles, and discuss the possible therapeutic targeting of NAT10 and the future directions of ac4C acetylation investigations.


Asunto(s)
Neoplasias , ARN , Humanos , Acetilación , Acetiltransferasas , Carcinogénesis/genética , Transformación Celular Neoplásica , Neoplasias/genética , Acetiltransferasas N-Terminal/genética , Acetiltransferasas N-Terminal/metabolismo
14.
Sci Total Environ ; 912: 169324, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38145680

RESUMEN

DEHP (Di(2-ethylhexyl) phthalate) is the most abundant phthalate component detected in environmental samples as it is widely used in the manufacturing of children's toys, medical devices and furniture. Due to its wide prevalence and propensity to accumulate in the food chain, significant concerns have risen about the safety profile of DEHP. Here, we used a zebrafish model to investigate the toxicity mechanisms of DEHP. Our results indicated that exposure to DEHP altered the ROS content in zebrafish spleen and inhibited the activities of antioxidant enzymes SOD and CAT, detoxification enzyme GSH-Px and induced histopathological damage. In addition, elucidated the mechanism of DEHP significantly promoted apoptosis and caused damage in spleen cells through the bax/bcl-2 pathway. Further genetic testing demonstrated significant alterations in mitochondrial biogenesis, fission, and fusion-related genes and suggested potential mechanistic pathways, including GM10532/m6A/FIS1 axis, the STAT3/POA1 axis, and the NFR1/TFAM axis. Serological and genomic analysis indicated that DEHP exposure activated the C3 complement cascade immune pathway and interfered with innate immune function. IBRv2 analysis proposes that innate immunity may serve as a signal indicator of early toxic responses to DEHP pollutants. This study provided comprehensive cellular and genetic data for DEHP toxicity studies and emphasized the need for future management and remediation of DEHP contamination. It also provides data to specifically support the health risk assessments of DEHP, as well as contributing to broader health and environmental research.


Asunto(s)
Dietilhexil Ftalato , Enfermedades Mitocondriales , Ácidos Ftálicos , Animales , Niño , Humanos , Dietilhexil Ftalato/toxicidad , Pez Cebra , Bazo , Apoptosis , Inmunidad Innata , Estrés Oxidativo
15.
J Hazard Mater ; 465: 133237, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38113741

RESUMEN

The abuse and residue of herbicides in the black soil area had seriously affected the soil structure, function and crop growth, posing severe threats to agricultural soil environment and public health. Given the limitation of routine microbial remediation, innovative and eco-friendly functional bacterial biofilm which could adapt under adverse conditions was developed on the biochar to investigate its enhanced bioremediation and metabolic characteristics of typical herbicide atrazine. Results revealed that the atrazine degrading strain Acinetobacter lwoffii had competitive advantage in soil indigenous microorganisms and formed dense biofilms on the biochar which was beneficial to cell viability maintenance and aggregations. Metatranscriptomics and RT-qPCR analysis demonstrated that the biochar-mediated biofilm improved the frequency of intercellular communications through quorum sensing and two-component signal regulation systems, and enhanced the atrazine biodegradation efficiency through horizontal gene transfer in co-metabolism mode, providing important scientific basis for the biological remediation of farmland soil non-point source pollution.


Asunto(s)
Atrazina , Carbón Orgánico , Herbicidas , Contaminantes del Suelo , Atrazina/química , Biodegradación Ambiental , Contaminantes del Suelo/metabolismo , Herbicidas/metabolismo , Suelo/química , Bacterias/metabolismo , Biopelículas , Microbiología del Suelo
16.
Appl Opt ; 62(30): 8104-8108, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38038106

RESUMEN

A single-frequency linearly polarization pulsed fiber laser based on an electro-optic modulator with injection seeding technique is demonstrated. The single-frequency performance of the fiber ring-cavity laser is guaranteed by the seed source, which is a distributed-feedback fiber laser based on the π-phase-shifted fiber Bragg grating. The electro-optic modulator triggers active Q-switching of the laser for pulse generation. The devices used in the fiber laser are all polarization-maintaining to ensure linear polarization laser output. Through parameter optimization, the laser generates a single-frequency linearly polarization pulsed laser with a central wavelength of 1064.22 nm, linewidth of 35 MHz, and polarization extinction ratio of better than 40 dB. This type of fiber laser can be applied in lidar, beam combining, nonlinear frequency conversion, and other fields.

17.
Front Microbiol ; 14: 1259960, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107861

RESUMEN

Objectives: Virus infection closely associated with autoimmune disease. The study aimed to explore the autoantibody profiles and the correlation of autoantibodies with the disease severity and the prognosis of the coronavirus disease 2019 (COVID-19) patients. Methods: Three hundred thirty-seven hospitalized COVID-19 patients from 6th to 23rd January 2023 were enrolled. Logistic and Cox regression analyses were used to analyze the risk factors for the patient's disease severity and outcome. The association between Anti-extractable nuclear antigen antibody (ENA) positivity and the prognosis of COVID-19 patients was analyzed using Kaplan-Meier survival curves. Results: 137 of COVID-19 patients were detected positive for antinuclear antibody (ANA), 61 had positive results for ENA, and 38 were positive for ANA and ENA. ANA positivity rate was higher in non-severe illness group (p = 0.032). COVID-19 patients who died during hospitalization had a high rate of ENA positivity than convalescent patients (p = 0.002). Multivariate logistic regression showed that ANA positivity was a protective factor for the disease severity of COVID-19. Multivariate Cox regression analysis revealed that ENA positivity, white blood cells count (WBC), aspartate aminotransferase (AST), Creatinine (CREA), and CRP were independent risk factors for the outcome of COVID-19 patients, and that COVID-19 patients with ENA positivity had a lower cumulative survival rate (p = 0.002). Conclusion: A spectrum of autoantibodies were expressed in COVID-19 patients, among which ANA and ENA positivity was associated with the severity and prognosis of COVID-19. Therefore, autoantibodies may help to assess the disease severity and prognosis of COVID-19 patients.

18.
Front Public Health ; 11: 1283158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026391

RESUMEN

Background: China discontinued the zero-COVID-19 policy on December 7, 2022, and then COVID-19 surged mid-December 2022 through mid-January 2023. However, the actual incidence was unknown. This study aimed to estimate the incidence of SARS-CoV-2 infection in children shortly after ending the zero-COVID-19 policy. Methods: This multicenter cross-sectional study included 1,065 children aged 8 months to 12 years from seven hospitals at six regions across Jiangsu province, based on the convenience sampling, from February 10 to March 10, 2023. Group I comprised 324 children aged 8 months-2 years without COVID-19 vaccination, group II consisted of 338 preschool children aged 3-5 years with varied vaccination history, and group III contained 403 primary school children aged 6-12 years with mostly vaccinated. The COVID-19 vaccines were composed of inactivated SARS-CoV-2. In addition, 96 children's sera collected in 2014 were included as negative controls. IgG and IgM antibodies against nucleocapsid (N) and subunit 1 of spike (S1) of SARS-CoV-2 (anti-N/S1) were measured with commercial kits (YHLO Biotech, Shenzhen, China). Results: None of the 96 children (5.1 ± 3.5 years; 58.3% boys) in 2014 was positive for anti-N/S1 IgG or IgM. Of the 1,065 children (5.0 ± 3.5 years; 56.0% boys), 988 (92.8%) were anti-N/S1 IgG positive but none was anti-N/S1 IgM positive. The positive rate of anti-N/S1 IgG in Group I, II, and III was 90.4, 88.5, and 98.3%, respectively, with significantly higher in group III than in groups I and II (p < 0.0001). The median antibody titers in group III (381.61 AU/ml) were much higher than that in group I (38.34 AU/ml) and II (51.88 AU/ml; p < 0.0001). Conclusion: More than 90% children experienced SARS-CoV-2 infection shortly after ending zero-COVID-19 policy in China, much higher than estimated infections by other studies. The widespread SARS-CoV-2 infection in unvaccinated children should be influential on the policy of COVID-19 vaccination in children in the future.


Asunto(s)
COVID-19 , Masculino , Preescolar , Humanos , Niño , Femenino , COVID-19/epidemiología , COVID-19/prevención & control , Estudios Transversales , Vacunas contra la COVID-19 , Incidencia , SARS-CoV-2 , China/epidemiología , Estudios Seroepidemiológicos , Inmunoglobulina M , Políticas , Inmunoglobulina G
19.
Environ Sci Pollut Res Int ; 30(52): 113088-113104, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37848797

RESUMEN

Reducing the environmental problems caused by nitrogen loss and nitrogen pollution is of great significance. The addition of biochar to soil is a new method for increasing nitrogen interception due to the special structural and physicochemical properties of biochar. The optimal modified biochar was screened out after acid-base modification and batch adsorption test in this paper. And then the effects of different soil and biochar mixing methods on soil physicochemical properties and nitrogen adsorption and retention were explored through soil column leaching test. The results showed that the biochar with a pyrolysis temperature of 700 °C had the best adsorption effect on nitrogen after being modified by 0.1 mol/L HCI, and the adsorption capacity of nitrate nitrogen reached 121.46 mg/g. The adsorption process of ammonia nitrogen and nitrate nitrogen conformed to the Langmuir model and was mainly homogeneous monolayer. After mixing the selected modified biochar with black soil, the pH increased by 4.77%, the content of ammonia nitrogen increased by 4.89%, and the nitrate content increased by 16.62%. In this study, the adsorption effect of biochar on nitrogen in black soil was discussed, so as to explore the optimal use of biochar in soil, which provided some reference basis for the relevant research.


Asunto(s)
Nitratos , Suelo , Suelo/química , Amoníaco , Carbón Orgánico/química , Nitrógeno/análisis , Adsorción
20.
Sci Total Environ ; 904: 166841, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37690753

RESUMEN

The plasticizer Diethylhexyl phthalate (DEHP), one of the most common contaminants, is widely detected in environmental and biological samples. However, the accumulation of DEHP in tissue and the molecular mechanisms underlying its physiological damage in the spleen of aquatic organisms have not yet been reported. In this study, gas chromatography-mass spectrometry (GC-MS), histology and multi-omics analysis were used to investigate DEHP exposure-induced alterations in transcriptomic profiles and metabolic network of zebrafish model. After exposure to DEHP, higher concentrations of DEHP were found in the intestine, liver and spleen. Anatomical and histological analyses showed that the zebrafish spleen index was significantly increased and inflammatory damage was observed. Increased splenic neutrophil counts indicate inflammation and tissue damage. Transcriptomic filtering showed that 3579 genes were significantly altered. Metabolomic analysis detected 543 differential metabolites. Multi-omics annotation results indicated that arachidonic acid and 12-Hydroperoxyicosatetraenoic acid (HPETE) are involved in the key inflammatory pathway "Inflammatory mediator regulation of TRP channels". This study demonstrated the accumulation characteristics of DEHP in aquatic zebrafish and the mechanisms of inflammation and tissue damage in the spleen which involve endogenous arachidonic acid. This will provide theoretical basis and data support for health risk assessments and tissue damage of DEHP.


Asunto(s)
Dietilhexil Ftalato , Animales , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/metabolismo , Pez Cebra/fisiología , Ácido Araquidónico , Bazo/metabolismo , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA