Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 21451, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271782

RESUMEN

Based on the joint analysis of multi-omic data and the biological experiments, we demonstrate that FOXF1 inhibits invasion and metastasis of lung adenocarcinoma cells and enhances anti-tumor immunity via regulating MFAP4/FAK signal axis in this study. The levels of FOXF1 and MFAP4 are significantly down-regulated in LUAD, and the increased levels of two genes can improve the clinical prognosis of LUAD patients. Fluorescein reporter gene determination, chromatin immunoprecipitation and gene co-expression analysis indicate that MFAP4 level is positively regulated by transcription factor FOXF1. The function enrichment analysis shows that the levels of FOXF1 and MFAP4 are closely associated with an enrichment of tumor metastasis signatures. FOXF1 can inhibit the migration and invasion of LAUD cells by transcriptionally activating MFAP4 expression. And the overexpression of FOXF1/MFAP4 can reduce focal adhesion kinase (FAK) phosphorylation, while their knockdown result in the opposite effects. The increased levels of FOXF1/MFAP4 enhance the antitumor immunity by increasing the infiltration of dendritic cells and CD4+ T cells, and the interactions between LUAD cells and immune cells, and activating multiple anti-tumor immunity-related pathways. In conclusion, our study reveals the potential function of FOXF1/MFAP4/FAK signal axis in inhibiting metastasis of LUAD cells and modulating anti-tumor immunity of LUAD patients.


Asunto(s)
Adenocarcinoma del Pulmón , Factores de Transcripción Forkhead , Neoplasias Pulmonares , Invasividad Neoplásica , Transducción de Señal , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Movimiento Celular , Ratones , Animales , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo
2.
BMC Infect Dis ; 24(1): 1018, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304813

RESUMEN

BACKGROUND: Cryptococcosis is progressively acknowledged among people, irrespective of the human with or without immunodeficiency virus (HIV). This change in epidemiology has been recorded in recent years, prompting closer examination and a broader understanding of the disease manifestations and risk factors. METHODS: The data of cryptococcal infections in China during 11 years were retrospectively analyzed. According to the position of infection, the patients were categorized into the pulmonary infection group and extrapulmonary infection group. The composition of the two groups was compared, and the potential risk factors of disseminated infection were analyzed. Logistic regression was used to analyze the prognostic risk factors of the disease. RESULTS: A total of 165 patients were enrolled. 113 (68.5%) were male, and the age was 47.49 (18-82) years. 101 cases (61.2%) had a normal immune function and 64 cases (38.8%) had impaired immune function. 45 patients had extrapulmonary infection, involving the central nervous system, bone and joint, skin and bloodstream, and 120 patients had simple pulmonary infection. The mortality of the extrapulmonary infection group (48.9%) was significantly higher than that of the pulmonary infection group (0.8%). According to univariate logistic regression analysis, immune status (hazard ratio [HR], 4.476; 95% confidence interval [CI], 1.725-11.618; P = 0.002), infection position ([HR], 113.826; [CI], 14.607-886.967; P < 0.001), white blood cell count, ([HR],1.209;[CI], 1.054-1.386; P = 0.007), hemoglobin ([HR], 0.970; [CI], 0.955-0.986; P < 0.001), platelet count ([HR], 0.993; [CI], 0.987-0.999; P = 0.026), neutrophil percentage ([HR], 1.115; [CI], 1.065-1.168; P < 0.001), lymphocyte percentage ([HR], 0.875; [CI], 0.827-0.927; P < 0.001), neutrophil-to-lymphocyte Ratio (NLR) ([HR], 1.144; [CI], 1.072-1.221; P < 0.001), monocyte percentage ([HR], 0.752; [CI], 0.618-0.915; P = 0.004) were related to the prognosis. Multivariate logistic regression analysis showed that the infection position was remained related to the prognosis with statistical significance ([HR], 0.018; [CI], 0.001-0.384; P = 0.001). CONCLUSION: Extrapulmonary infection of Cryptococcosis is an important risk factor for prognosis. High levels of neutrophils and NLR, and low levels of lymphocytes and monocytes may lead to disseminated infection of Cryptococcosis. Further studies are needed to reduce the occurrence rate of extrapulmonary infection and mortality.


Asunto(s)
Criptococosis , Enfermedades Pulmonares Fúngicas , Humanos , Criptococosis/epidemiología , Criptococosis/mortalidad , Masculino , Persona de Mediana Edad , Femenino , Adulto , Anciano , Pronóstico , Adolescente , Estudios Retrospectivos , Adulto Joven , China/epidemiología , Anciano de 80 o más Años , Factores de Riesgo , Enfermedades Pulmonares Fúngicas/epidemiología , Enfermedades Pulmonares Fúngicas/mortalidad , Enfermedades Pulmonares Fúngicas/microbiología
3.
Mater Today Bio ; 28: 101186, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39221220

RESUMEN

Diabetic wounds pose a clinical challenge due to persistent inflammation, severe bacterial infections, inadequate vascularization, and pronounced oxidative stress. Current therapeutic modalities fail to provide satisfactory outcomes in managing these conditions, resulting in considerable patient distress. Two-dimensional nanomaterials (2DNMs), characterized by their unique nanosheet structures, expansive surface areas, and remarkable physicochemical properties, have garnered considerable attention for their potential in therapeutic applications. Emerging 2DNMs can be loaded with various pharmacological agents, including small molecules, metal ions, and liposomes. Moreover, they can be integrated with various biomaterials such as hydrogels, microneedles, and microspheres, thus demonstrating unprecedented advantages in expediting the healing process of diabetic wounds. Moreover, 2DNMs exhibit exceptional performance characteristics, including high biocompatibility, effective antimicrobial properties, optimal phototherapeutic effects, and enhanced electrostimulation capabilities. These properties enable them to modulate the wound microenvironment, leading to widespread application in tissue repair with remarkable outcomes. This review delineates several emerging 2DNMs, such as graphene and its derivatives, black phosphorus, MXenes, and transition metal dichalcogenides, in the context of diabetic wound repair. Furthermore, it elucidates the translational challenges and future perspectives of 2DNMs in wound healing treatments. Overall, 2DNMs present a highly promising strategy for ameliorating diabetic wounds, thus providing novel avenues for diagnostic and therapeutic strategies in diabetic wound management.

4.
Small ; : e2405311, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148189

RESUMEN

The use of membrane-based guided bone regeneration techniques has great potential for single-stage reconstruction of critical-sized bone defects. Here, a multifunctional bone regeneration membrane combining flexible elasticity, electrical stimulation (ES) and osteoinductive activity is developed by in situ doping of MXene 2D nanomaterials with conductive functionality and ß-TCP particles into a Poly(lactic acid-carbonate (PDT) composite nano-absorbable membrane (P/T/MXene) via electrostatic spinning technique. The composite membrane has good feasibility due to its temperature sensitivity, elastic memory capacity, coordinated degradation profile and easy preparation process. In vitro experiments showed the P/T/MXene membrane effectively promoted the recruitment and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under ES and enhanced the angiogenic capacity of endothelial cells, which synergistically promoted bone regeneration through neovascularization. In addition, an in vivo rat model of cranial bone defects further confirmed the bone regeneration efficacy of the P/T/MXene membrane. In conclusion, the developed P/T/MXene membrane can effectively promote bone regeneration through their synergistic multifunctional effects, suggesting the membranes have great potential for guiding tissue regeneration and providing guidance for the biomaterials design.

5.
J Virol ; 98(9): e0080524, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39194244

RESUMEN

Coxsackievirus group B3 (CVB3) belongs to the genus Enteroviruses of the family Picornaviridae and is the main pathogen underlying viral myocarditis (VMC). No specific therapeutic is available for this condition. Argininosuccinate synthase 1 (ASS1) is a key enzyme in the urea cycle that converts citrulline and aspartic acid to argininosuccinate. Here, we found that CVB3 and its capsid protein VP2 inhibit the autophagic degradation of ASS1 and that CVB3 consumes citrulline to upregulate ASS1, triggers urea cycle metabolic reprogramming, and then activates macrophages to develop pro-inflammatory polarization, thereby promoting the occurrence and development of VMC. Conversely, citrulline supplementation to prevent depletion can downregulate ASS1, rescue macrophage polarization, and alleviate the pathogenicity of VMC. These findings provide a new perspective on the occurrence and development of VMC, revealing ASS1 as a potential new target for treating this disease. IMPORTANCE: Viral myocarditis (VMC) is a common and potentially life-threatening myocardial inflammatory disease, most commonly caused by CVB3 infection. So far, the pathogenesis of VMC caused by CVB3 is mainly focused on two aspects: one is the direct myocardial injury caused by a large number of viral replication in the early stage of infection, and the other is the local immune cell infiltration and inflammatory damage of the myocardium in the adaptive immune response stage. There are few studies on the early innate immunity of CVB3 infection in myocardial tissue, but the appearance of macrophages in the early stage of CVB3 infection suggests that they can play a regulatory role as early innate immune response cells in myocardial tissue. Here, we discovered a possible new mechanism of VMC caused by CVB3, revealed new drug targets for anti-CVB3, and discovered the therapeutic potential of citrulline for VMC.


Asunto(s)
Argininosuccinato Sintasa , Infecciones por Coxsackievirus , Enterovirus Humano B , Macrófagos , Miocarditis , Miocarditis/virología , Miocarditis/metabolismo , Miocarditis/inmunología , Miocarditis/patología , Enterovirus Humano B/fisiología , Animales , Macrófagos/virología , Macrófagos/metabolismo , Macrófagos/inmunología , Ratones , Infecciones por Coxsackievirus/virología , Infecciones por Coxsackievirus/inmunología , Infecciones por Coxsackievirus/metabolismo , Argininosuccinato Sintasa/metabolismo , Humanos , Masculino , Inflamación/metabolismo , Miocardio/metabolismo , Miocardio/patología , Miocardio/inmunología , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/inmunología , Reprogramación Metabólica
6.
Virol J ; 21(1): 179, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39107822

RESUMEN

BACKGROUND: Epstein-Barr virus (EBV) can be reactivated and proliferated with fatal outcome in immuno-compromised people, but the clinical consequences of EBV infection in patients with severe fever with thrombocytopenia syndrome (SFTS) remain uncertain. In this study, we investigated the infection rate, the influence and the early predictors of EBV infection in SFTS patients. METHODS: In this retrospective study, SFTS patients who were treated in the First Affiliated Hospital of Nanjing Medical University from May 2011 to August 2021 were enrolled and divided into infected and non-infected groups. We compared the demographic characteristics, clinical manifestations and signs, laboratory tests and prognosis, and explored the risk factors of EBV infection by receiver operating characteristic (ROC) curve and logistic regression. RESULTS: A total of 120 hospitalized SFTS patients with EBV-DNA testing were enrolled in this study. Patients with EBV infection had statistically significant higher mortality rate (32.0% vs. 11.43%, P = 0.005). Compared with the non-infected group, the EBV-infected group had higher levels of C-reactive protein (CRP), creatine-kinase (CK), fasting blood glucose (FBG), blood urea nitrogen (BUN), D-dimer, and CD56+ cell counts, lower levels of immunoglobulin G (IgG), IgM, complement 3 (C3), and C4. The proportion of patients with age ≥ 60 years and ferritin > 1500.0 ng/ml in the EBV-infected group was significantly higher than that in the non-infected group. The results of ROC analysis showed that the cut-off values of CRP, IgG, C3, C4, and CD56+ cell counts to predict EBV infection were 13.2 mg/l, 12.5 g/l, 1.1 g/l, 0.6 g/l, 0.3 g/l, and 94.0 cells/µl. Multivariable logistic analysis showed that age ≥ 60 years old, CRP > 13.2 mg/l, BUN > 5.4 mmol/l, ferritin > 1500.0 ng/ml, IgG < 12.5 g/l, IgM < 1.1 g/l, C4 < 0.3 g/l, and CD56+ cell counts > 94.0 cells/µl were the independent risk factors of EBV infection in SFTS patients. CONCLUSIONS: SFTS combined with EBV infection is associated with high morbidity and mortality. It is necessary to strengthen screening for EBV infection and its early predictive markers after admission in SFTS patients.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Síndrome de Trombocitopenia Febril Grave , Humanos , Masculino , Femenino , Persona de Mediana Edad , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/virología , Estudios Retrospectivos , Síndrome de Trombocitopenia Febril Grave/virología , Síndrome de Trombocitopenia Febril Grave/sangre , Síndrome de Trombocitopenia Febril Grave/diagnóstico , Anciano , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/aislamiento & purificación , Factores de Riesgo , Pronóstico , Adulto , Curva ROC , China/epidemiología , Anticuerpos Antivirales/sangre , ADN Viral/sangre
7.
Virulence ; 15(1): 2367783, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38937901

RESUMEN

Helicobacter pylori causes globally prevalent infections that are highly related to chronic gastritis and even development of gastric carcinomas. With the increase of antibiotic resistance, scientists have begun to search for better vaccine design strategies to eradicate H. pylori colonization. However, while current strategies prefer to formulate vaccines with a single H. pylori antigen, their potential has not yet been fully realized. Outer membrane vesicles (OMVs) are a potential platform since they could deliver multiple antigens. In this study, we engineered three crucial H. pylori antigen proteins (UreB, CagA, and VacA) onto the surface of OMVs derived from Salmonella enterica serovar Typhimurium (S. Typhimurium) mutant strains using the hemoglobin protease (Hbp) autotransporter system. In various knockout strategies, we found that OMVs isolated from the ΔrfbP ΔfliC ΔfljB ΔompA mutants could cause distinct increases in immunoglobulin G (IgG) and A (IgA) levels and effectively trigger T helper 1- and 17-biased cellular immune responses, which perform a vital role in protecting against H. pylori. Next, OMVs derived from ΔrfbP ΔfliC ΔfljB ΔompA mutants were used as a vector to deliver different combinations of H. pylori antigens. The antibody and cytokine levels and challenge experiments in mice model indicated that co-delivering UreB and CagA could protect against H. pylori and antigen-specific T cell responses. In summary, OMVs derived from the S. Typhimurium ΔrfbP ΔfliC ΔfljB ΔompA mutant strain as the vector while importing H. pylori UreB and CagA as antigenic proteins using the Hbp autotransporter system would greatly benefit controlling H. pylori infection.


Outer membrane vesicles (OMVs), as a novel antigen delivery platform, has been used in vaccine design for various pathogens and even tumors. Salmonella enterica serovar Typhimurium (S. Typhimurium), as a bacterium that is easy to engineer and has both adjuvant efficacy and immune stimulation capacity, has become the preferred bacterial vector for purifying OMVs after Escherichia coli. This study focuses on the design of Helicobacter pylori ;(H. pylori) vaccines, utilizing genetically modified Salmonella OMVs to present several major antigens of H. pylori, including UreB, VacA and CagA. The optimal Salmonella OMV delivery vector and antigen combinations are screened and identified, providing new ideas for the development of H. pylori vaccines and an integrated antigen delivery platform for other difficult to develop vaccines for bacteria, viruses, and even tumors.


Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Infecciones por Helicobacter , Helicobacter pylori , Salmonella typhimurium , Animales , Infecciones por Helicobacter/prevención & control , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Helicobacter pylori/inmunología , Helicobacter pylori/genética , Ratones , Salmonella typhimurium/inmunología , Salmonella typhimurium/genética , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/genética , Femenino , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/sangre , Inmunoglobulina G , Ingeniería Genética , Ureasa/inmunología , Ureasa/genética , Modelos Animales de Enfermedad
8.
Adv Healthc Mater ; 12(30): e2301486, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37556132

RESUMEN

Stem cell injection is an effective approach for treating diabetic wounds; however, shear stress during injections can negatively affect their stemness and cell growth. Cell-laden porous microspheres can provide shelter for bone mesenchymal stem cells (BMSC). Herein, curcumin-loaded flower-like porous microspheres (CFPM) are designed by combining phase inversion emulsification with thermally induced phase separation-guided four-arm poly (l-lactic acid) (B-PLLA). Notably, the CFPM shows a well-defined surface topography and inner structure, ensuring a high surface area to enable the incorporation and delivery of a large amount of -BMSC and curcumin. The BMSC-carrying CFPM (BMSC@CFPM) maintains the proliferation, retention, and stemness of -BMSCs, which, in combination with their sustainable curcumin release, facilitates the endogenous production of growth/proangiogenic factors and offers a local anti-inflammatory function. An in vivo bioluminescence assay demonstrates that BMSC@CFPM can significantly increase the retention and survival of BMSC in wound sites. Accordingly, BMSC@CFPM, with no significant systemic toxicity, could significantly accelerate diabetic wound healing by promoting angiogenesis, collagen reconstruction, and M2 macrophage polarization. RNA sequencing further unveils the mechanisms by which BMSC@CFPM promotes diabetic wound healing by increasing -growth factors and enhancing angiogenesis through the JAK/STAT pathway. Overall, BMSC@CFPM represents a potential therapeutic tool for diabetic wound healing.


Asunto(s)
Curcumina , Diabetes Mellitus , Humanos , Curcumina/farmacología , Microesferas , Polímeros/farmacología , Porosidad , Quinasas Janus/farmacología , Factores de Transcripción STAT/farmacología , Transducción de Señal , Cicatrización de Heridas , Diabetes Mellitus/tratamiento farmacológico
9.
Biomater Transl ; 4(4): 280-290, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38282706

RESUMEN

Biodegradable polymer microspheres that can be used as drug carriers are of great importance in biomedical applications, however, there are still challenges in controllable preparation of microsphere surface morphology and improvement of bioactivity. In this paper, firstly, poly(L-lactic acid) (PLLA) was synthesised by ring-opening polymerisation under anhydrous anaerobic conditions and further combined with the emulsion method, biodegradable PLLA microspheres (PM) with sizes ranging from 60-100 µm and with good sphericity were prepared. In addition, to further improve the surface morphology of PLLA microspheres and enhance their bioactivity, functionalised porous PLLA microspheres loaded with magnesium oxide (MgO)/magnesium carbonate (MgCO3) (PMg) were also prepared by the emulsion method. The results showed that the loading of MgO/MgCO3 resulted in the formation of a porous structure on the surface of the microspheres (PMg) and the dissolved Mg2+ could be released slowly during the degradation of microspheres. In vitro cellular experiments demonstrated the good biocompatibility of PM and PMg, while the released Mg2+ further enhanced the anti-inflammatory effect and osteogenic activity of PMg. Functionalised PMg not only show promise for controlled preparation of drug carriers, but also have translational potential for bone regeneration.

10.
Chem Asian J ; 17(20): e202200630, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-35909078

RESUMEN

Key Laboratory for Ultrafine Materials of Ministry of Education Centre for Biomedical Technologies Current tissue engineering technology aims to achieve the regeneration of human tissues, which integrates the key factors such as scaffolds, cells and biomolecules. Among these key factors, the development of high-performance scaffolds is the basis for the success of tissue engineering strategies. In the past decades, hydrogel scaffolds have been developed rapidly and widely used in biomedical field, however, their drawbacks have also been revealed, which shows that a single hydrogel scaffold cannot meet the excellent performance required in the field of tissue engineering. Recently, microspheres have been further engineered to fabricate structurally and functionally reliable artificial three-dimensional scaffolds of desired shape with enhanced specific biological functions. Therefore, the effective combination of hydrogel and microspheres can facilitate the development of high-performance scaffolds for tissue engineering and further fine-tuning the composite structure, which is expected to solve the dilemma faced by a single scaffold. In this review paper, we systematically summurized the type and preparation method for synthesis of hydrogel and microsphere materials commonly used in developing microsphere-containing hydrogel scaffolds. We then reviewed the broad application of these hybrid scaffolds in various fields of tissue engineering, followed by a summary and perspective on future directions.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Hidrogeles/química , Microesferas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...