RESUMEN
Nuclear pore complexes (NPCs) on the nuclear membrane surface have a crucial function in controlling the movement of small molecules and macromolecules between the cell nucleus and cytoplasm through their intricate core channel resembling a spiderweb with several layers. Currently, there are few methods available to accurately measure the dynamics of nuclear pores on the nuclear membranes at the nanoscale. The limitation of traditional optical imaging is due to diffraction, which prevents achieving the required resolution for observing a diverse array of organelles and proteins within cells. Super-resolution techniques have effectively addressed this constraint by enabling the observation of subcellular components on the nanoscale. Nevertheless, it is crucial to acknowledge that these methods often need the use of fixed samples. This also raises the question of how closely a static image represents the real intracellular dynamic system. High-speed atomic force microscopy (HS-AFM) is a unique technique used in the field of dynamic structural biology, enabling the study of individual molecules in motion close to their native states. Establishing a reliable and repeatable technique for imaging mammalian tissue at the nanoscale using HS-AFM remains challenging due to inadequate sample preparation. This study presents the rapid strainer microfiltration (RSM) protocol for directly preparing high-quality nuclei from the mouse brain. Subsequently, we promptly utilize HS-AFM real-time imaging and cinematography approaches to record the spatiotemporal of nuclear pore nano-dynamics from the mouse brain.
Asunto(s)
Proteínas , Imagen Individual de Molécula , Animales , Ratones , Microscopía de Fuerza Atómica/métodos , Proteínas/química , Núcleo Celular , Encéfalo/diagnóstico por imagen , MamíferosRESUMEN
S100A11 is a small Ca2+-activatable protein known to localize along stress fibers (SFs). Analyzing S100A11 localization in HeLa and U2OS cells further revealed S100A11 enrichment at focal adhesions (FAs). Strikingly, S100A11 levels at FAs increased sharply, yet transiently, just before FA disassembly. Elevating intracellular Ca2+ levels with ionomycin stimulated both S100A11 recruitment and subsequent FA disassembly. However, pre-incubation with the non-muscle myosin II (NMII) inhibitor blebbistatin or with an inhibitor of the stretch-activatable Ca2+ channel Piezo1 suppressed S100A11 recruitment, implicating S100A11 in an actomyosin-driven FA recruitment mechanism involving Piezo1-dependent Ca2+ influx. Applying external forces on peripheral FAs likewise recruited S100A11 to FAs even if NMII activity was inhibited, corroborating the mechanosensitive recruitment mechanism of S100A11. However, extracellular Ca2+ and Piezo1 function were indispensable, indicating that NMII contraction forces act upstream of Piezo1-mediated Ca2+ influx, in turn leading to S100A11 activation and FA recruitment. S100A11-knockout cells display enlarged FAs and had delayed FA disassembly during cell membrane retraction, consistent with impaired FA turnover in these cells. Our results thus demonstrate a novel function for S100A11 in promoting actomyosin contractility-driven FA disassembly.
Asunto(s)
Actomiosina , Adhesiones Focales , Humanos , Adhesiones Focales/metabolismo , Actomiosina/metabolismo , Calcio/metabolismo , Proteínas del Citoesqueleto/metabolismo , Miosina Tipo II/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismoRESUMEN
Magnetotactic bacteria (MTB) generate a membrane-enclosed subcellular compartment called magnetosome, which contains a biomineralized magnetite or greigite crystal, an inner membrane-derived lipid bilayer membrane, and a set of specifically targeted associated proteins. Magnetosomes are formed by a group of magnetosome-associated proteins encoded in a genomic region called magnetosome island. Magnetosomes are then arranged in a linear chain-like positioning, and the resulting magnetic dipole of the chain functions as a geomagnetic sensor for magneto-aerotaxis motility. Recent metagenomic analyses of environmental specimens shed light on the sizable phylogenetical diversity of uncultured MTB at the phylum level. These findings have led to a better understanding of the diversity and conservation of magnetosome-associated proteins. This review provides an overview of magnetosomes and magnetosome-associated proteins and introduces recent topics about this fascinating magnetic bacterial organelle.
Asunto(s)
Magnetosomas , Magnetosomas/química , Magnetosomas/metabolismo , Magnetosomas/ultraestructura , Proteínas Bacterianas/metabolismo , Bacterias/genética , Óxido Ferrosoférrico/análisis , Óxido Ferrosoférrico/química , Óxido Ferrosoférrico/metabolismo , Bacterias GramnegativasRESUMEN
Magnetotactic bacteria (MTB) ubiquitously inhabit the oxic-anoxic interface or anaerobic areas of aquatic environments. MTB biomineralize magnetite or greigite crystals and synthesize an organelle known as magnetosome. This intrinsic ability of MTB allows them to accumulate iron to levels 100-1000 times higher than those in non-magnetotactic bacteria (non-MTB). Therefore, MTB considerably contributes to the global iron cycle as primary iron suppliers in the aquatic environmental food chain. However, to the best of our knowledge, there have been no reports describing the effects of trophic interactions between MTB and their protist grazers on the iron distributions in MTB grazers and the extracellular milieu. Herein, we evaluated the effects of MTB grazing using a model species of protist (Tetrahymena pyriformis) and a model species of MTB (Magnetospirillum magneticum AMB-1). MTB-fed T. pyriformis exhibited a magnetic response and contained magnetite crystals in their vacuoles. Fluorescence imaging using a ferrous ion-specific fluorescent dye revealed that the cellular ferrous ion content was five times higher in MTB-fed T. pyriformis than in non-MTB grazers. Moreover, soluble iron concentrations in the spent media increased with time during MTB predation. This study provides experimental evidence to delineate the importance of trophic interactions of MTB on iron distributions.
Asunto(s)
Magnetosomas , Magnetospirillum , Óxido Ferrosoférrico/análisis , Magnetosomas/química , Hierro , VacuolasRESUMEN
The assessment of intracellular dynamics is crucial for understanding the function and formation process of bacterial organelle, just as it is for the inquisition of their eukaryotic counterparts. The methods for imaging magnetosome organelles in a magnetotactic bacterial cell using live-cell fluorescence imaging by highly inclined and laminated optical sheet (HILO) microscopy are presented in this chapter. Furthermore, we introduce methods for pH imaging in magnetosome lumen as an application of fluorescence magnetosome imaging.
Asunto(s)
Magnetosomas , Bacterias , Imagen Óptica , Proteínas BacterianasRESUMEN
Bacteria communicate through signaling molecules that coordinate group behavior. Hydrophobic signals that do not diffuse in aqueous environments are used as signaling molecules by several bacteria. However, limited information is currently available on the mechanisms by which these molecules are transported between cells. Membrane vesicles (MVs) with diverse functions play important roles in the release and delivery of hydrophobic signaling molecules, leading to differences in the dynamics of signal transportation from those of free diffusion. Studies on Paracoccus denitrificans, which produces a hydrophobic long-chain N-acyl homoserine lactone (AHL), showed that signals were loaded into MVs at a concentration with the potential to trigger the quorum sensing (QS) response with a "single shot" to the cell. Furthermore, stimulating the formation of MVs increased the release of signals from the cell; therefore, a basic understanding of MV formation is important. Novel findings revealed the formation of MVs through different routes, resulting in the production of different types of MVs. Methods such as high-speed atomic force microscopy (AFM) phase imaging allow the physical properties of MVs to be analyzed at a nanometer resolution, revealing their heterogeneity. In this special minireview, we introduce the role of MVs in bacterial communication and highlight recent findings on MV formation and their physical heterogeneity by referring to our research. We hope that this minireview will provide basic information for understanding the functionality of MVs in ecological systems.
Asunto(s)
Acil-Butirolactonas , Percepción de Quorum , Transporte Biológico , EcosistemaRESUMEN
Bacterial cells release nanometer-sized extracellular membrane vesicles (MVs) to deliver cargo molecules for use in mediating various biological processes. However, the detailed processes of transporting these cargos from MVs to recipient cells remain unclear because of the lack of imaging techniques to image nanometer-sized fragile vesicles in a living bacterial cell surface. Herein, we quantitatively demonstrated that the direct binding of MV to the cell surface significantly promotes hydrophobic quorum-sensing signal (C16-HSL) transportation to the recipient cells. Moreover, we analyzed the MV-binding process in the Paracoccus denitrificans cell surface using high-speed atomic force microscopy phase imaging. Although MV shapes were unaltered after binding to the cell surface, the physical properties of a group of single MV particles were shifted. Additionally, the phase shift values of MVs were higher than that of the cell's surfaces upon binding, whereas the phase shift values of the group of MVs were decreased during observation. The shifting physical properties occurred irreversibly only once for each MV during the observations. The decreasing phase shift values indicated alterations of chemical components in the MVs as well, thereby suggesting the dynamic process in which single MV particles deliver their hydrophobic cargo into the recipient cell. IMPORTANCE Compared to the increasing knowledge about MV release mechanisms from donor cells, the mechanism by which recipient cells receive cargo from MVs remains unknown. Herein, we have successfully imaged single MV-binding processes in living bacterial cell surfaces. Accordingly, we confirmed the shift in the MV hydrophobic properties after landing on the cell surface. Our results showed the detailed states and the attaching process of a single MV into the cell surface and can aid the development of a new model for MV reception into Gram-negative bacterial cell surfaces. The insight provided by this study is significant for understanding MV-mediated cell-cell communication mechanisms. Moreover, the AFM technique presented for nanometer-scaled mapping of dynamic physical properties alteration on a living cell could be applied for the analyses of various biological phenomena occurring on the cell surface, and it gives us a new view into the understanding of the phenotypes of the bacterial cell surface.
Asunto(s)
Percepción de Quorum , Membrana Celular , Transporte BiológicoRESUMEN
Magnetotactic bacteria are a diverse group of microorganisms that use intracellular chains of ferrimagnetic nanocrystals, produced within magnetosome organelles, to align and navigate along the geomagnetic field. Several conserved genes for magnetosome formation have been described, but the mechanisms leading to distinct species-specific magnetosome chain configurations remain unclear. Here, we show that the fragmented nature of magnetosome chains in Magnetospirillum magneticum AMB-1 is controlled by genes mcaA and mcaB. McaA recognizes the positive curvature of the inner cell membrane, while McaB localizes to magnetosomes. Along with the MamK actin-like cytoskeleton, McaA and McaB create space for addition of new magnetosomes in between pre-existing magnetosomes. Phylogenetic analyses suggest that McaA and McaB homologs are widespread among magnetotactic bacteria and may represent an ancient strategy for magnetosome positioning.
Asunto(s)
Magnetosomas , Magnetospirillum , Actinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fenómenos Magnéticos , Magnetosomas/genética , Magnetospirillum/genética , Magnetospirillum/metabolismo , FilogeniaRESUMEN
Glass nanopipettes are widely used for various applications in nanosciences. In most of the applications, it is important to characterize their geometrical parameters, such as the aperture size and the inner cone angle at the tip region. For nanopipettes with sub-10 nm aperture and thin wall thickness, transmission electron microscopy (TEM) must be most instrumental in their precise geometrical measurement. However, this measurement has remained a challenge because heat generated by electron beam irradiation would largely deform sub-10 nm nanopipettes. Here, we provide methods for preparing TEM specimens that do not cause deformation of such tiny nanopipettes.
RESUMEN
Bacteria release nanometer-scale extracellular membrane vesicles (MVs) to mediate a variety of biological processes. We analyzed individual MVs under physiological conditions by phase imaging of high-speed atomic force microscopy to assess the physiological heterogeneity of MVs isolated from bacterial cultures. Phase imaging makes it possible to map the physical properties of an individual, fragile MV in an isolated MV population containing a broad variety of vesicle diameters, from 20 to 150 nm. We also developed a method for quantitatively comparing the physical properties of MVs among samples. This allowed for the comparison of the physical properties of MVs isolated from different bacterial species. We compared bacterial MVs isolated from four bacterial species and artificially synthesized liposomes. We demonstrate that each bacterial species generates physically heterogeneous types of MVs, unlike the physical homogeneity displayed by liposomes. These results indicate that the physical heterogeneity of bacterial MVs is mainly caused by compositional differences mediated through biological phenomena and could be unique to each species. We provide a new methodology using phase imaging that would pave the way for single-vesicle analysis of extracellular vesicles of a broad size range.
Asunto(s)
Bacterias/metabolismo , Vesículas Extracelulares/química , Microscopía de Fuerza Atómica/métodos , Escherichia coli/metabolismo , Vesículas Extracelulares/fisiología , Procesamiento de Imagen Asistido por Computador , Liposomas/química , Tamaño de la Partícula , Pseudomonas/metabolismoRESUMEN
Motility often plays a decisive role in the survival of species. Five systems of motility have been studied in depth: those propelled by bacterial flagella, eukaryotic actin polymerization and the eukaryotic motor proteins myosin, kinesin and dynein. However, many organisms exhibit surprisingly diverse motilities, and advances in genomics, molecular biology and imaging have showed that those motilities have inherently independent mechanisms. This makes defining the breadth of motility nontrivial, because novel motilities may be driven by unknown mechanisms. Here, we classify the known motilities based on the unique classes of movement-producing protein architectures. Based on this criterion, the current total of independent motility systems stands at 18 types. In this perspective, we discuss these modes of motility relative to the latest phylogenetic Tree of Life and propose a history of motility. During the ~4 billion years since the emergence of life, motility arose in Bacteria with flagella and pili, and in Archaea with archaella. Newer modes of motility became possible in Eukarya with changes to the cell envelope. Presence or absence of a peptidoglycan layer, the acquisition of robust membrane dynamics, the enlargement of cells and environmental opportunities likely provided the context for the (co)evolution of novel types of motility.
Asunto(s)
Movimiento Celular/genética , Movimiento Celular/fisiología , Flagelos/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animales , Bacterias , Evolución Biológica , Dineínas/metabolismo , Evolución Molecular , Flagelos/genética , Humanos , Cinesinas/metabolismo , Miosinas/metabolismo , FilogeniaRESUMEN
Magnetotactic bacteria synthesize uniform-sized and regularly shaped magnetic nanoparticles in their organelles termed magnetosomes. Homeostasis of the magnetosome lumen must be maintained for its role accomplishment. Here, we developed a method to estimate the pH of a single living cell of the magnetotactic bacterium Magnetospirillum magneticum AMB-1 using a pH-sensitive fluorescent protein E2GFP. Using the pH measurement, we estimated that the cytoplasmic pH was approximately 7.6 and periplasmic pH was approximately 7.2. Moreover, we estimated pH in the magnetosome lumen and cytoplasmic surface using fusion proteins of E2GFP and magnetosome-associated proteins. The pH in the magnetosome lumen increased during the exponential growth phase when magnetotactic bacteria actively synthesize magnetite crystals, whereas pH at the magnetosome surface was not affected by the growth stage. This live-cell pH measurement method will help for understanding magnetosome pH homeostasis to reveal molecular mechanisms of magnetite biomineralization in the bacterial organelle.
Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Magnetosomas/metabolismo , Magnetospirillum/metabolismo , Citoplasma/metabolismo , Electroforesis en Gel de Poliacrilamida , Homeostasis , Concentración de Iones de Hidrógeno , Nanopartículas de Magnetita , Microscopía Fluorescente , Orgánulos/metabolismo , Periplasma/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Análisis de la Célula Individual , Espectrometría de Fluorescencia , Fracciones Subcelulares/metabolismoRESUMEN
Magnetotactic bacteria are a unique group of bacteria that synthesize a magnetic organelle termed the magnetosome, which they use to assist with their magnetic navigation in a specific type of bacterial motility called magneto-aerotaxis. Cytoskeletal filaments consisting of the actin-like protein MamK are associated with the magnetosome chain. Previously, the function of MamK was thought to be in positioning magnetosome organelles; this was proposed based on observations via electron microscopy still images. Here, we conducted live-cell time-lapse fluorescence imaging analyses employing highly inclined and laminated optical sheet microscopy, and these methods enabled us to visualize detailed dynamic movement of magnetosomes in growing cells during the entire cell cycle with high-temporal resolution and a high signal/noise ratio. We found that the MamK cytoskeleton anchors magnetosomes through a mechanism that requires MamK-ATPase activity throughout the cell cycle to prevent simple diffusion of magnetosomes within the cell. We concluded that the static chain-like arrangement of the magnetosomes is required to precisely and consistently segregate the magnetosomes to daughter cells. Thus, the daughter cells inherit a functional magnetic sensor that mediates magneto-reception.IMPORTANCE Half a century ago, bacterial cells were considered a simple "bag of enzymes"; only recently have they been shown to comprise ordered complexes of macromolecular structures, such as bacterial organelles and cytoskeletons, similar to their eukaryotic counterparts. In eukaryotic cells, the positioning of organelles is regulated by cytoskeletal elements. However, the role of cytoskeletal elements in the positioning of bacterial organelles, such as magnetosomes, remains unclear. Magnetosomes are associated with cytoskeletal filaments that consist of the actin-like protein MamK. In this study, we focused on how the MamK cytoskeleton regulates the dynamic movement of magnetosome organelles in living magnetotactic bacterial cells. Here, we used fluorescence imaging to visualize the dynamics of magnetosomes throughout the cell cycle in living magnetotactic bacterial cells to understand how they use the actin-like cytoskeleton to maintain and to make functional their nano-sized magnetic organelles.
Asunto(s)
Proteínas Bacterianas/metabolismo , Ciclo Celular , Magnetosomas/metabolismo , Magnetospirillum/fisiología , Imanes , Citoesqueleto de Actina/metabolismo , Actinas/química , Citoesqueleto/metabolismo , Fluorescencia , Magnetosomas/ultraestructura , Microscopía Electrónica , Imagen de Lapso de TiempoRESUMEN
Nuclear pore complexes (NPCs) are the sole turnstile implanted in the nuclear envelope (NE), acting as a central nanoregulator of transport between the cytosol and the nucleus. NPCs consist of â¼30 proteins, termed nucleoporins. About one-third of nucleoporins harbor natively unstructured, intrinsically disordered phenylalanine-glycine strings (FG-Nups), which engage in transport selectivity. Because the barriers insert deeply in the NPC, they are nearly inaccessible. Several in vitro barrier models have been proposed; however, the dynamic FG-Nups protein molecules themselves are imperceptible in vivo. We show here that high-speed atomic force microscopy (HS-AFM) can be used to directly visualize nanotopographical changes of the nuclear pore inner channel in colorectal cancer (CRC) cells. Furthermore, using MLN8237/alisertib, an apoptotic and autophagic inducer currently being tested in relapsed cancer clinical trials, we unveiled the functional loss of nucleoporins, particularly the deformation of the FG-Nups barrier, in dying cancer cells. We propose that the loss of this nanoscopic resilience is an irreversible dying code in cells. These findings not only illuminate the potential application of HS-AFM as an intracellular nanoendoscopy but also might aid in the design of future nuclear targeted nanodrug delivery tailored to the individual patient.
Asunto(s)
Neoplasias Colorrectales/patología , Microscopía de Fuerza Atómica/métodos , Poro Nuclear/patología , Apoptosis/efectos de los fármacos , Azepinas/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Células HCT116 , Humanos , Poro Nuclear/efectos de los fármacos , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/análisis , Proteínas de Complejo Poro Nuclear/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacologíaRESUMEN
Magnetosomes are membrane-enveloped bacterial organelles containing nano-sized magnetic particles, and function as a cellular magnetic sensor, which assist the cells to navigate and swim along the geomagnetic field. Localized with each magnetosome is a suite of proteins involved in the synthesis, maintenance and functionalization of the organelle, however the detailed molecular organization of the proteins in magnetosomes is unresolved. MamA is one of the most abundant magnetosome-associated proteins and is anchored to the magnetosome vesicles through protein-protein interactions, but the identity of the protein that interacts with MamA is undetermined. In this study, we found that MamA binds to a magnetosome membrane protein Mms6. Two different molecular masses of Mms6, 14.5-kDa and 6.0-kDa, were associated with the magnetosomes. Using affinity chromatography, we identified that the 14.5-kDa Mms6 interacts with MamA, and the interaction was further confirmed by pull-down, immunoprecipitation and size-exclusion chromatography assays. Prior to this, Mms6 was assumed to be strictly involved with biomineralizing magnetite; however, these results suggest that Mms6 has an additional responsibility, binding to MamA.
RESUMEN
Bacteria have been studied using different microscopy methods for many years. Recently, the developments of high-speed atomic force microscopy have opened the doors to study bacteria in new ways due to the fact that it uses much less force on the sample while imaging. This makes the high-speed atomic force microscope an indispensable technique for imaging the surface of living bacterial cells because it allows for the high-resolution visualization of surface proteins in their natural condition without disrupting the cell or the activity of the proteins. Previous work examining living cells of Magnetospirillum magneticum AMB-1 demonstrated that the surface of these bacteria was covered with a net-like structure that is mainly composed of porin molecules. However, it was unclear whether or not this feature was unique to other living bacteria. In this study we used the high-speed atomic force microscope to examine the surface of living cells of Escherichia coli and Rhodobacter sphaeroides to compare their structure with that of M. magneticum. Our research clearly demonstrated that both of these types of cells have an outer surface that is covered in a network of nanometer-sized holes similar to M. magneticum. The diameter of the holes was 8.0±1.5 nm for E. coli and 6.6±1.1 nm for R. sphaeroides. The results in this paper confirm that this type of outer surface structure exists in other types of bacteria and it is not unique to Magnetospirillum.
Asunto(s)
Escherichia coli/ultraestructura , Proteínas de la Membrana/ultraestructura , Nanoestructuras/ultraestructura , Rhodobacter sphaeroides/ultraestructura , Magnetospirillum/ultraestructura , Viabilidad Microbiana , Microscopía de Fuerza Atómica , Porinas/ultraestructuraRESUMEN
Magnetotactic bacteria (MTB) are widespread aquatic bacteria, and are a phylogenetically, physiologically and morphologically heterogeneous group, but they all have the ability to orientate and move along the geomagnetic field using intracellular magnetic organelles called magnetosomes. Isolation and cultivation of novel MTB are necessary for a comprehensive understanding of magnetosome formation and function in divergent MTB. In this study, we enriched a giant rod-shaped magnetotactic bacterium (strain GRS-1) from a freshwater pond in Kanazawa, Japan. Cells of strain GRS-1 were unusually large (~13×~8 µm). They swam in a helical trajectory towards the south pole of a bar magnet by means of a polar bundle of flagella. Another striking feature of GRS-1 was the presence of two distinct intracellular biomineralized structures: large electron-dense granules composed of calcium and long chains of magnetosomes that surround the large calcium granules. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that this strain belongs to the Gammaproteobacteria and represents a new genus of MTB.
Asunto(s)
Agua Dulce/microbiología , Gammaproteobacteria/clasificación , Gammaproteobacteria/aislamiento & purificación , Análisis por Conglomerados , ADN Ribosómico/química , ADN Ribosómico/genética , Flagelos/fisiología , Gammaproteobacteria/citología , Gammaproteobacteria/fisiología , Japón , Locomoción , Magnetismo , Magnetosomas/ultraestructura , Microscopía , Datos de Secuencia Molecular , Filogenia , Estanques/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
Magnetotactic bacteria use a specific set of conserved proteins to biomineralize crystals of magnetite or greigite within their cells in organelles called magnetosomes. Using Magnetospirillum magneticum AMB-1, we examined one of the magnetotactic bacteria-specific conserved proteins named MamP that was recently reported as a new type of cytochrome c that has iron oxidase activity. We found that MamP is a membrane-bound cytochrome, and the MamP content increases during the exponential growth phase compared to two other magnetosome-associated proteins on the same operon, MamA and MamK. To assess the function of MamP, we overproduced MamP from plasmids in wild-type (WT) AMB-1 and found that during the exponential phase of growth, these cells contained more magnetite crystals that were the same size as crystals in WT cells. Conversely, when the heme c-binding motifs within the mamP on the plasmid was mutated, the cells produced the same number of crystals, but smaller crystals than in WT cells during exponential growth. These results strongly suggest that during the exponential phase of growth, MamP is crucial to the normal growth of magnetite crystals during biomineralization.
Asunto(s)
Citocromos/metabolismo , Óxido Ferrosoférrico/metabolismo , Magnetosomas/metabolismo , Magnetospirillum/enzimología , Magnetospirillum/metabolismo , Cristalización , PlásmidosRESUMEN
The Papilio xuthus (Lepidoptera: Papilionidae) pupa expresses novel soluble proteins that undergo reversible temperature-dependent coacervate-formation. We purified two coacervate-forming proteins, PX-1 and PX-4, from the wings of pharate adults. PX-1 and PX-4 form coacervates upon warming. Transmission electron microscopy analysis revealed that these proteins assemble ordered bead-like ultrastructures. We cloned and sequenced PX-1 and PX-4 cDNAs. The PX-1 and PX-4 amino acid sequences contain many hydrophobic residues and show homologies to insect cuticular proteins. Moreover, when recombinant PX-1 and PX-4 were overexpressed in Escherichia coli, both recombinant proteins exhibited temperature-dependent coacervation. Furthermore, analyses of truncated mutants of PX-1 suggest that both the Val/Pro-rich region and Gly/lle-rich regions of PX-1 are involved in such coacervation.
Asunto(s)
Mariposas Diurnas/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de Insectos/metabolismo , Fenómenos Fisiológicos del Integumento Común , Secuencia de Aminoácidos , Animales , Clonación Molecular , Proteínas de Insectos/genética , Datos de Secuencia Molecular , Mutación , TemperaturaRESUMEN
Prokaryotic organelles called magnetosomes allow magnetotactic bacteria to navigate along geomagnetic field lines. In this study, we modified a swimming assay commonly used to assess bacterial motility to develop a new method of assessing magnetotactic motility. By this method, the swimming assay was performed in an artificial magnetic field. Magnetotactic bacteria formed a wedge-shaped swimming halo that elongated parallel to the magnetic field. Magnetotactic motility was qualitatively assessed by comparing halo shapes. We termed this method the magnetic swimming assay. On the magnetic swimming assay, the mamK deletion strain formed a shorter halo than the wild type, indicating that the assay sensitively detects differences in magnetotactic motility. Moreover, we isolated two spontaneous magnetotactic motility mutants using magnetic swimming plates. Our findings indicate that the magnetic swimming assay is a useful method for the sensitive analysis of magnetotaxis phenotypes and mutant screening.