Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO Mol Med ; 16(9): 2080-2108, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103698

RESUMEN

Chemotherapy, the standard of care treatment for cancer patients with advanced disease, has been increasingly recognized to activate host immune responses to produce durable outcomes. Here, in colorectal adenocarcinoma (CRC) we identify oxaliplatin-induced Thioredoxin-Interacting Protein (TXNIP), a MondoA-dependent tumor suppressor gene, as a negative regulator of Growth/Differentiation Factor 15 (GDF15). GDF15 is a negative prognostic factor in CRC and promotes the differentiation of regulatory T cells (Tregs), which inhibit CD8 T-cell activation. Intriguingly, multiple models including patient-derived tumor organoids demonstrate that the loss of TXNIP and GDF15 responsiveness to oxaliplatin is associated with advanced disease or chemotherapeutic resistance, with transcriptomic or proteomic GDF15/TXNIP ratios showing potential as a prognostic biomarker. These findings illustrate a potentially common pathway where chemotherapy-induced epithelial oxidative stress drives local immune remodeling for patient benefit, with disruption of this pathway seen in refractory or advanced cases.


Asunto(s)
Adenocarcinoma , Proteínas Portadoras , Neoplasias Colorrectales , Factor 15 de Diferenciación de Crecimiento , Oxaliplatino , Humanos , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Factor 15 de Diferenciación de Crecimiento/genética , Proteínas Portadoras/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
2.
Trends Cell Biol ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38355348

RESUMEN

Metazoan organisms are heterocellular systems composed of hundreds of different cell types, which arise from an isogenic genome through differentiation. Cellular 'plasticity' further enables cells to alter their fate in response to exogenous cues and is involved in a variety of processes, such as wound healing, infection, and cancer. Recent advances in cellular model systems, high-dimensional single-cell technologies, and lineage tracing have sparked a renaissance in plasticity research. Here, we discuss the definition of cell plasticity, evaluate state-of-the-art model systems and techniques to study cell-fate dynamics, and explore the application of single-cell technologies to obtain functional insights into cell plasticity in healthy and diseased tissues. The integration of advanced biomimetic model systems, single-cell technologies, and high-throughput perturbation studies is enabling a new era of research into non-genetic plasticity in metazoan systems.

3.
Trends Cancer ; 10(3): 185-195, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38071119

RESUMEN

Colorectal cancer (CRC) is traditionally considered to be a genetically driven disease. However, nongenetic plasticity has recently emerged as a major driver of tumour initiation, metastasis, and therapy response in CRC. Central to these processes is a recently discovered cell type, the revival colonic stem cell (revCSC). In contrast to traditional proliferative CSCs (proCSCs), revCSCs prioritise survival over propagation. revCSCs play an essential role in primary tumour formation, metastatic dissemination, and nongenetic chemoresistance. Current evidence suggests that CRC tumours leverage intestinal stem cell plasticity to both proliferate (via proCSCs) when unchallenged and survive (via revCSCs) in response to cell-extrinsic pressures. Although revCSCs likely represent a major source of therapeutic failure in CRC, our increasing knowledge of this important stem cell fate provides novel opportunities for therapeutic intervention.


Asunto(s)
Neoplasias Colorrectales , Células Madre Neoplásicas , Humanos , Células Madre Neoplásicas/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Diferenciación Celular
4.
Cell ; 186(25): 5554-5568.e18, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065080

RESUMEN

Cancer cells are regulated by oncogenic mutations and microenvironmental signals, yet these processes are often studied separately. To functionally map how cell-intrinsic and cell-extrinsic cues co-regulate cell fate, we performed a systematic single-cell analysis of 1,107 colonic organoid cultures regulated by (1) colorectal cancer (CRC) oncogenic mutations, (2) microenvironmental fibroblasts and macrophages, (3) stromal ligands, and (4) signaling inhibitors. Multiplexed single-cell analysis revealed a stepwise epithelial differentiation phenoscape dictated by combinations of oncogenes and stromal ligands, spanning from fibroblast-induced Clusterin (CLU)+ revival colonic stem cells (revCSCs) to oncogene-driven LRIG1+ hyper-proliferative CSCs (proCSCs). The transition from revCSCs to proCSCs is regulated by decreasing WNT3A and TGF-ß-driven YAP signaling and increasing KRASG12D or stromal EGF/Epiregulin-activated MAPK/PI3K flux. We find that APC loss and KRASG12D collaboratively limit access to revCSCs and disrupt stromal-epithelial communication-trapping epithelia in the proCSC fate. These results reveal that oncogenic mutations dominate homeostatic differentiation by obstructing cell-extrinsic regulation of cell-fate plasticity.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Diferenciación Celular , Oncogenes , Proteínas Proto-Oncogénicas p21(ras)/genética , Células Madre , Humanos , Animales , Ratones , Linaje de la Célula
5.
Cell ; 186(25): 5606-5619.e24, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065081

RESUMEN

Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity-shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Humanos , Apoptosis , Organoides , Transducción de Señal , Análisis de la Célula Individual , Evaluación Preclínica de Medicamentos , Algoritmos , Células Madre
6.
ArXiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37808090

RESUMEN

Efficient computation of optimal transport distance between distributions is of growing importance in data science. Sinkhorn-based methods are currently the state-of-the-art for such computations, but require On2 computations. In addition, Sinkhorn-based methods commonly use an Euclidean ground distance between datapoints. However, with the prevalence of manifold structured scientific data, it is often desirable to consider geodesic ground distance. Here, we tackle both issues by proposing Geodesic Sinkhorn-based on diffusing a heat kernel on a manifold graph. Notably, Geodesic Sinkhorn requires only O(nlog⁡n) computation, as we approximate the heat kernel with Chebyshev polynomials based on the sparse graph Laplacian. We apply our method to the computation of barycenters of several distributions of high dimensional single cell data from patient samples undergoing chemotherapy. In particular, we define the barycentric distance as the distance between two such barycenters. Using this definition, we identify an optimal transport distance and path associated with the effect of treatment on cellular data.

7.
FEBS Lett ; 597(15): 1921-1927, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487655

RESUMEN

The systematic identification of tumour vulnerabilities through perturbational experiments on cancer models, including genome editing and drug screens, is playing a crucial role in combating cancer. This collective effort is known as the Cancer Dependency Map (DepMap). The 1st European Cancer Dependency Map Symposium (EuroDepMap), held in Milan last May, featured talks, a roundtable discussion, and a poster session, showcasing the latest discoveries and future challenges related to the DepMap. The symposium aimed to facilitate interactions among participants across Europe, encourage idea exchange with leading experts, and present their work and future projects. Importantly, it sparked discussions on future endeavours, such as screening more complex cancer models and accounting for tumour evolution.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Europa (Continente)
8.
Blood Adv ; 7(9): 1725-1738, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36453632

RESUMEN

We recently described a low-affinity second-generation CD19 chimeric antigen receptor (CAR) CAT that showed enhanced expansion, cytotoxicity, and antitumor efficacy compared with the high-affinity (FMC63-based) CAR used in tisagenlecleucel, in preclinical models. Furthermore, CAT demonstrated an excellent toxicity profile, enhanced in vivo expansion, and long-term persistence in a phase 1 clinical study. To understand the molecular mechanisms behind these properties of CAT CAR T cells, we performed a systematic in vitro characterization of the transcriptomic (RNA sequencing) and protein (cytometry by time of flight) changes occurring in T cells expressing low-affinity vs high-affinity CD19 CARs following stimulation with CD19-expressing cells. Our results show that CAT CAR T cells exhibit enhanced activation to CD19 stimulation and a distinct transcriptomic and protein profile, with increased activation and cytokine polyfunctionality compared with FMC63 CAR T cells. We demonstrate that the enhanced functionality of low-affinity CAT CAR T cells is a consequence of an antigen-dependent priming induced by residual CD19-expressing B cells present in the manufacture.


Asunto(s)
Citocinas , Receptores Quiméricos de Antígenos , Citocinas/metabolismo , Inmunoterapia Adoptiva/métodos , Linfocitos T , Receptores Quiméricos de Antígenos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos CD19
9.
STAR Protoc ; 3(1): 101174, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35199038

RESUMEN

Here, we present a comprehensive protocol for the generation and functional characterization of chimeric antigen receptor (CAR) T cells and their products by mass cytometry in a reproducible and scalable manner. We describe the production of CAR T cells from human peripheral blood mononuclear cells. We then detail a three-step staining protocol with metal-labeled antibodies and the subsequent mass cytometry analysis. This protocol allows simultaneous characterization of CAR T cell intracellular signaling, activation, proliferation, cytokine production, and phenotype in a single assay.


Asunto(s)
Leucocitos Mononucleares , Linfocitos T , Anticuerpos , Humanos
10.
Nat Protoc ; 16(10): 4897-4918, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34497385

RESUMEN

Organoids are biomimetic tissue models comprising multiple cell types and cell states. Post-translational modification (PTM) signaling networks control cellular phenotypes and are frequently dysregulated in diseases such as cancer. Although signaling networks vary across cell types, there are limited techniques to study cell type-specific PTMs in heterocellular organoids. Here, we present a multiplexed mass cytometry (MC) protocol for single-cell analysis of PTM signaling and cell states in organoids and organoids co-cultured with fibroblasts and leukocytes. We describe how thiol-reactive organoid barcoding in situ (TOBis) enables 35-plex and 126-plex single-cell comparison of organoid cultures and provide a cytometry by time of flight (CyTOF) signaling analysis pipeline (CyGNAL) for computing cell type-specific PTM signaling networks. The TOBis MC protocol takes ~3 d from organoid fixation to data acquisition and can generate single-cell data for >40 antibodies from millions of cells across 126 organoid cultures in a single MC run.


Asunto(s)
Organoides , Análisis de la Célula Individual , Diferenciación Celular , Fibroblastos , Humanos
11.
Trends Pharmacol Sci ; 42(8): 675-687, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34092416

RESUMEN

Cardiac physiology and homeostasis are maintained by the interaction of multiple cell types, via both intra- and intercellular signaling pathways. Perturbations in these signaling pathways induced by oncology therapies can reduce cardiac function, ultimately leading to heart failure. As cancer survival increases, related cardiovascular complications are becoming increasingly prevalent, thus identifying the perturbations and cell signaling drivers of cardiotoxicity is increasingly important. Here, we discuss the homotypic and heterotypic cellular interactions that form the basis of intra- and intercellular cardiac signaling pathways, and how oncological agents disrupt these pathways, leading to heart failure. We also highlight the emerging systems biology techniques that can be applied, enabling a deeper understanding of the intra- and intercellular signaling pathways across multiple cell types associated with cardiovascular toxicity.


Asunto(s)
Cardiopatías , Preparaciones Farmacéuticas , Cardiotoxicidad/etiología , Humanos , Miocitos Cardíacos , Transducción de Señal
12.
Trends Biotechnol ; 39(8): 774-787, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33279281

RESUMEN

Organoids are self-organising stem cell-derived ex vivo cultures widely adopted as biomimetic models of healthy and diseased tissues. Traditional low-dimensional experimental methods such as microscopy and bulk molecular analysis have generated remarkable biological insights from organoids. However, as complex heterocellular systems, organoids are especially well-positioned to take advantage of emerging high-dimensional technologies. In particular, single-cell methods offer considerable opportunities to analyse organoids at unprecedented scale and depth, enabling comprehensive characterisation of cellular processes and spatial organisation underpinning organoid heterogeneity. This review evaluates state-of-the-art analytical methods applied to organoids, discusses the latest advances in single-cell technologies, and speculates on the integration of these two rapidly developing fields.


Asunto(s)
Biomimética , Organoides , Fisiología , Técnicas de Cultivo , Humanos , Fisiología/instrumentación , Fisiología/métodos , Análisis de la Célula Individual
13.
Nat Cell Biol ; 22(3): 289-296, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32094692

RESUMEN

The process of metastasis is complex1. In breast cancer, there are frequently long time intervals between cells leaving the primary tumour and growth of overt metastases2,3. Reasons for disease indolence and subsequent transition back to aggressive growth include interactions with myeloid and fibroblastic cells in the tumour microenvironment and ongoing immune surveillance4-6. However, the signals that cause actively growing cells to enter an indolent state, thereby enabling them to survive for extended periods of time, are not well understood. Here we reveal how the behaviour of indolent breast cancer cells in the lung is determined by their interactions with alveolar epithelial cells, in particular alveolar type 1 cells. This promotes the formation of fibronectin fibrils by indolent cells that drive integrin-dependent pro-survival signals. Combined in vivo RNA sequencing and drop-out screening identified secreted frizzled-related protein 2 (SFRP2) as a key mediator of this interaction. Sfrp2 is induced in breast cancer cells by signals from lung epithelial cells and promotes fibronectin fibril formation and survival, whereas blockade of Sfrp2 expression reduces the burden of indolent disease.


Asunto(s)
Células Epiteliales Alveolares/fisiología , Neoplasias de la Mama/patología , Proteínas de la Membrana/fisiología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas pp60(c-src)/fisiología , Transducción de Señal
14.
Nat Methods ; 17(3): 335-342, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066960

RESUMEN

Despite the widespread adoption of organoids as biomimetic tissue models, methods to comprehensively analyze cell-type-specific post-translational modification (PTM) signaling networks in organoids are absent. Here, we report multivariate single-cell analysis of such networks in organoids and organoid cocultures. Simultaneous analysis by mass cytometry of 28 PTMs in >1 million single cells derived from small intestinal organoids reveals cell-type- and cell-state-specific signaling networks in stem, Paneth, enteroendocrine, tuft and goblet cells, as well as enterocytes. Integrating single-cell PTM analysis with thiol-reactive organoid barcoding in situ (TOBis) enables high-throughput comparison of signaling networks between organoid cultures. Cell-type-specific PTM analysis of colorectal cancer organoid cocultures reveals that shApc, KrasG12D and Trp53R172H cell-autonomously mimic signaling states normally induced by stromal fibroblasts and macrophages. These results demonstrate how standard mass cytometry workflows can be modified to perform high-throughput multivariate cell-type-specific signaling analysis of healthy and cancerous organoids.


Asunto(s)
Biomimética , Neoplasias Colorrectales/patología , Regulación de la Expresión Génica , Intestino Delgado/citología , Organoides/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Técnicas de Cocultivo/métodos , Neoplasias Colorrectales/metabolismo , Citofotometría/métodos , Enterocitos/citología , Células Enteroendocrinas/citología , Femenino , Fibroblastos/citología , Células Caliciformes/citología , Humanos , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Células de Paneth/citología , Análisis de la Célula Individual/métodos , Compuestos de Sulfhidrilo/química , Proteína p53 Supresora de Tumor/metabolismo
15.
Cell Rep ; 29(9): 2810-2822.e5, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31775047

RESUMEN

Lymph nodes (LNs) act as filters, constantly sampling peripheral cues. This is facilitated by the conduit network, a tubular structure of aligned extracellular matrix (ECM) fibrils ensheathed by fibroblastic reticular cells (FRCs). LNs undergo rapid 3- to 5-fold expansion during adaptive immune responses, but these ECM-rich structures are not permanently damaged. Whether conduit flow or filtering function is affected during LN expansion is unknown. Here, we show that conduits are partially disrupted during acute LN expansion, but FRC-FRC contacts remain connected. We reveal that polarized FRCs deposit ECM basolaterally using LL5-ß and that ECM production is regulated at transcriptional and secretory levels by the C-type lectin CLEC-2, expressed by dendritic cells. Inflamed LNs maintain conduit size exclusion, and flow is disrupted but persists, indicating the robustness of this structure despite rapid tissue expansion. We show how dynamic communication between peripheral tissues and LNs provides a mechanism to prevent inflammation-induced fibrosis in lymphoid tissue.


Asunto(s)
Matriz Extracelular/inmunología , Fibroblastos/inmunología , Ganglios Linfáticos/inmunología
16.
Methods Mol Biol ; 1636: 219-234, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28730482

RESUMEN

Cell-specific proteome labeling enables global proteome-wide analysis of cell signaling in heterotypic co-cultures. Such approaches have provided unique insight in contact-initiated receptor tyrosine kinase signaling, transfer of proteomic material between heterotypic cells, and interactions between normal and oncogenic cells. Here we describe current methods for cell-specific labeling of heterotypic cells with isotopic labeled amino acids (e.g., SILAC and CTAP). We outline the advantages and disadvantages of individual approaches, describe typical experimental scenarios, and discuss where each experimental approach is optimally applied.


Asunto(s)
Espectrometría de Masas , Proteómica , Transducción de Señal , Coloración y Etiquetado , Técnicas de Cocultivo , Humanos , Fosfoproteínas , Proteoma , Proteómica/métodos
17.
Trends Cancer ; 3(2): 79-88, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28239669

RESUMEN

Tissues contain multiple different cell types and can be considered to be heterocellular systems. Signaling between different cells allows tissues to achieve phenotypes that no cell type can achieve in isolation. Such emergent tissue-level phenotypes can be said to 'supervene upon' heterocellular signaling. It is proposed here that cancer is also an emergent phenotype that supervenes upon heterocellular signaling. Using colorectal cancer (CRC) as an example, I review how heterotypic cells differentially communicate to support emergent malignancy. Studying tumors as integrated heterocellular systems - rather than as solitary expansions of mutated cells - may reveal novel ways to treat cancer.


Asunto(s)
Comunicación Celular/genética , Linaje de la Célula/genética , Neoplasias Colorrectales/genética , Heterogeneidad Genética , Células Clonales/patología , Neoplasias Colorrectales/patología , Humanos , Transducción de Señal/genética
18.
Mol Biosyst ; 13(1): 92-105, 2016 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-27824369

RESUMEN

Localisation and protein function are intimately linked in eukaryotes, as proteins are localised to specific compartments where they come into proximity of other functionally relevant proteins. Significant co-localisation of two proteins can therefore be indicative of their functional association. We here present COLA, a proteomics based strategy coupled with a bioinformatics framework to detect protein-protein co-localisations on a global scale. COLA reveals functional interactions by matching proteins with significant similarity in their subcellular localisation signatures. The rapid nature of COLA allows mapping of interactome dynamics across different conditions or treatments with high precision.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Proteoma , Proteómica , Fraccionamiento Celular , Línea Celular , Cromatografía Liquida , Análisis por Conglomerados , Humanos , Espacio Intracelular/metabolismo , Espectrometría de Masas , Unión Proteica , Transporte de Proteínas , Proteómica/métodos , Sensibilidad y Especificidad , Fracciones Subcelulares
20.
Cell ; 165(4): 910-20, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27087446

RESUMEN

Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRAS(G12D)) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRAS(G12D) signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRAS(G12D) engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRAS(G12D). Consequently, reciprocal KRAS(G12D) produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRAS(G12D) alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. VIDEO ABSTRACT.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Animales , Comunicación Celular , Humanos , Ratones , Fosfoproteínas/análisis , Fosfoproteínas/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...