Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurotherapeutics ; 20(6): 1820-1834, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37733208

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting upper and lower motor neurons (MNs). Neuregulin-1 (NRG1) is a pleiotropic growth factor that has been shown to be potentially valuable for ALS when supplemented by means of viral-mediated gene therapy. However, these results are inconsistent with other reports. An alternative approach for investigating the therapeutic impact of NRG1 on ALS is the use of transgenic mouse lines with genetically defined NRG1 overexpression. Here, we took advantage of a mouse line with NRG1 type III overexpression in spinal cord α motor neurons (MN) to determine the impact of steadily enhanced NRG1 signalling on mutant superoxide dismutase 1 (SOD1)-induced disease. The phenotype of SOD1G93A-NRG1 double transgenic mice was analysed in detail, including neuropathology and extensive behavioural testing. At least 3 animals per condition and sex were histopathologically assessed, and a minimum of 10 mice per condition and sex were clinically evaluated. The accumulation of misfolded SOD1 (mfSOD1), MN degeneration, and a glia-mediated neuroinflammatory response are pathological hallmarks of ALS progression in SOD1G93A mice. None of these aspects was significantly improved when examined in double transgenic NRG1-SOD1G93A mice. In addition, behavioural testing revealed that NRG1 type III overexpression did not affect the survival of SOD1G93A mice but accelerated disease onset and worsened the motor phenotype.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Ratones , Animales , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa-1/genética , Neurregulina-1/genética , Enfermedades Neurodegenerativas/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Neuronas Motoras/patología , Ratones Transgénicos
2.
Aging (Albany NY) ; 13(14): 18051-18093, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34319911

RESUMEN

Besides skeletal muscle wasting, sarcopenia entails morphological and molecular changes in distinct components of the neuromuscular system, including spinal cord motoneurons (MNs) and neuromuscular junctions (NMJs); moreover, noticeable microgliosis has also been observed around aged MNs. Here we examined the impact of two flavonoid-enriched diets containing either green tea extract (GTE) catechins or cocoa flavanols on age-associated regressive changes in the neuromuscular system of C57BL/6J mice. Compared to control mice, GTE- and cocoa-supplementation significantly improved the survival rate of mice, reduced the proportion of fibers with lipofuscin aggregates and central nuclei, and increased the density of satellite cells in skeletal muscles. Additionally, both supplements significantly augmented the number of innervated NMJs and their degree of maturity compared to controls. GTE, but not cocoa, prominently increased the density of VAChT and VGluT2 afferent synapses on MNs, which were lost in control aged spinal cords; conversely, cocoa, but not GTE, significantly augmented the proportion of VGluT1 afferent synapses on aged MNs. Moreover, GTE, but not cocoa, reduced aging-associated microgliosis and increased the proportion of neuroprotective microglial phenotypes. Our data indicate that certain plant flavonoids may be beneficial in the nutritional management of age-related deterioration of the neuromuscular system.


Asunto(s)
Envejecimiento , Catequina/farmacología , Suplementos Dietéticos , Unión Neuromuscular/efectos de los fármacos , Extractos Vegetales/farmacología , Polifenoles/farmacología , Animales , Cacao/química , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Té/química
3.
Glia ; 69(5): 1216-1240, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33386754

RESUMEN

Peripheral nerve section with subsequent disconnection of motor neuron (MN) cell bodies from their skeletal muscle targets leads to a rapid reactive response involving the recruitment and activation of microglia. In addition, the loss of afferent synapses on MNs occurs in concomitance with microglial reaction by a process described as synaptic stripping. However, the way in which postaxotomy-activated microglia adjacent to MNs are involved in synaptic removal is less defined. Here, we used confocal and electron microscopy to examine interactions between recruited microglial cells and presynaptic terminals in axotomized MNs between 1 and 15 days after sciatic nerve transection in mice. We did not observe any bulk engulfment of synaptic boutons by microglia. Instead, microglial cells internalized small membranous-vesicular fragments which originated from the acute disruption of synaptic terminals involving the activation of the necroptotic pathway. The presence of abundant extracellular vesicles in the perineuronal space after axotomy, together with the increased expression of phospho-mixed lineage kinase domain-like protein and, later, of extracellular vesicle markers, such as CD9, CD63, and flotillin, indicate that the vesicles mainly originated in synapses and were transferred to microglia. The upregulation of Rab7 and Rab10 in microglia interacting with injured MNs, indicated the activation of endocytosis. As activated microglia and synaptic boutons displayed positive C1q immunoreactivity, a complement-mediated opsonization may also contribute to microglial-mediated synaptic disruption. In addition to the relevance of our data in the context of neuroinflammation and MN disease, they should also be taken into account for understanding functional recovery after peripheral nerve injury.


Asunto(s)
Traumatismos de los Nervios Periféricos , Terminales Presinápticos , Animales , Ratones , Microglía , Neuronas Motoras , Enfermedades Neuroinflamatorias , Opsonización , Médula Espinal
4.
J Cachexia Sarcopenia Muscle ; 11(6): 1628-1660, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32691534

RESUMEN

BACKGROUND: The cellular mechanisms underlying the age-associated loss of muscle mass and function (sarcopenia) are poorly understood, hampering the development of effective treatment strategies. Here, we performed a detailed characterization of age-related pathophysiological changes in the mouse neuromuscular system. METHODS: Young, adult, middle-aged, and old (1, 4, 14, and 24-30 months old, respectively) C57BL/6J mice were used. Motor behavioural and electrophysiological tests and histological and immunocytochemical procedures were carried out to simultaneously analyse structural, molecular, and functional age-related changes in distinct cellular components of the neuromuscular system. RESULTS: Ageing was not accompanied by a significant loss of spinal motoneurons (MNs), although a proportion (~15%) of them in old mice exhibited an abnormally dark appearance. Dark MNs were also observed in adult (~9%) and young (~4%) animals, suggesting that during ageing, some MNs undergo early deleterious changes, which may not lead to MN death. Old MNs were depleted of cholinergic and glutamatergic inputs (~40% and ~45%, respectively, P < 0.01), suggestive of age-associated alterations in MN excitability. Prominent microgliosis and astrogliosis [~93% (P < 0.001) and ~100% (P < 0.0001) increase vs. adults, respectively] were found in old spinal cords, with increased density of pro-inflammatory M1 microglia and A1 astroglia (25-fold and 4-fold increase, respectively, P < 0.0001). Ageing resulted in significant reductions in the nerve conduction velocity and the compound muscle action potential amplitude (~30%, P < 0.05, vs. adults) in old distal plantar muscles. Compared with adult muscles, old muscles exhibited significantly higher numbers of both denervated and polyinnervated neuromuscular junctions, changes in fibre type composition, higher proportion of fibres showing central nuclei and lipofuscin aggregates, depletion of satellite cells, and augmented expression of different molecules related to development, plasticity, and maintenance of neuromuscular junctions, including calcitonin gene-related peptide, growth associated protein 43, agrin, fibroblast growth factor binding protein 1, and transforming growth factor-ß1. Overall, these alterations occurred at varying degrees in all the muscles analysed, with no correlation between the age-related changes observed and myofiber type composition or muscle topography. CONCLUSIONS: Our data provide a global view of age-associated neuromuscular changes in a mouse model of ageing and help to advance understanding of contributing pathways leading to development of sarcopenia.


Asunto(s)
Gliosis , Neuronas Motoras , Envejecimiento , Animales , Gliosis/patología , Ratones , Ratones Endogámicos C57BL , Unión Neuromuscular , Sarcopenia/etiología , Sarcopenia/patología
5.
FASEB J ; 33(7): 7833-7851, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30912977

RESUMEN

C-type synaptic boutons (C-boutons) provide cholinergic afferent input to spinal cord motor neurons (MNs), which display an endoplasmic reticulum (ER)-related subsurface cistern (SSC) adjacent to their postsynaptic membrane. A constellation of postsynaptic proteins is clustered at C-boutons, including M2 muscarinic receptors, potassium channels, and σ-1 receptors. In addition, we previously found that neuregulin (NRG)1 is associated with C-boutons at postsynaptic SSCs, whereas its ErbB receptors are located in the presynaptic compartment. C-bouton-mediated regulation of MN excitability has been implicated in MN disease, but NRG1-mediated functions and the impact of various pathologic conditions on C-bouton integrity have not been studied in detail. Here, we investigated changes in C-boutons after electrical stimulation, pharmacological treatment, and peripheral nerve axotomy. SSC-linked NRG1 clusters were severely disrupted in acutely stressed MNs and after tunicamycin-induced ER stress. In axotomized MNs, C-bouton loss occurred in concomitance with microglial recruitment and was prevented by the ER stress inhibitor salubrinal. Activated microglia displayed a positive chemotaxis to C-boutons. Analysis of transgenic mice overexpressing NRG1 type I and type III isoforms in MNs indicated that NRG1 type III acts as an organizer of SSC-like structures, whereas NRG1 type I promotes synaptogenesis of presynaptic cholinergic terminals. Moreover, MN-derived NRG1 signals may regulate the activity of perineuronal microglial cells. Together, these data provide new insights into the molecular and cellular pathology of C-boutons in MN injury and suggest that distinct NRG1 isoform-mediated signaling functions regulate the complex matching between pre- and postsynaptic C-bouton elements.-Salvany, S., Casanovas, A., Tarabal, O., Piedrafita, L., Hernández, S., Santafé, M., Soto-Bernardini, M. C., Calderó, J., Schwab, M. H., Esquerda, J. E. Localization and dynamic changes of neuregulin-1 at C-type synaptic boutons in association with motor neuron injury and repair.


Asunto(s)
Células del Asta Anterior/fisiología , Fibras Nerviosas Amielínicas/fisiología , Regeneración Nerviosa/fisiología , Neurregulina-1/fisiología , Terminales Presinápticos/fisiología , Nervio Ciático/lesiones , Animales , Axotomía , Fibras Colinérgicas/fisiología , Cinamatos/farmacología , Estimulación Eléctrica , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico Liso/fisiología , Retículo Endoplásmico Liso/ultraestructura , Ratones , Ratones Transgénicos , Microglía/fisiología , Compresión Nerviosa , Neurregulina-1/genética , Terminales Presinápticos/efectos de los fármacos , Isoformas de Proteínas/fisiología , Nervio Ciático/fisiología , Transducción de Señal/fisiología , Fracciones Subcelulares/química , Tiourea/análogos & derivados , Tiourea/farmacología , Tunicamicina/toxicidad , Vacuolas/metabolismo , Vacuolas/ultraestructura
6.
Front Cell Neurosci ; 13: 582, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038174

RESUMEN

C-bouton-type cholinergic afferents exert an important function in controlling motoneuron (MN) excitability. During the immunocytochemical analysis of the role of c-Jun in MNs with a monoclonal (clone Y172) antibody against phospho (p)-c-Jun (serine [Ser]63), unexpected labeling was identified in the cell body cytoplasm. As predicted for c-Jun in adult spinal cord, very few, if any MNs exhibited nuclear immunoreactivity with the Y172 antibody; conversely, virtually all MNs displayed strong Y172 immunostaining in cytoplasmic structures scattered throughout the soma and proximal dendrites. The majority of these cytoplasmic Y172-positive profiles was closely associated with VAChT-positive C-boutons, but not with other types of nerve afferents contacting MNs. Ultrastructural analysis revealed that cytoplasmic Y172 immunostaining was selectively located at the subsurface cistern (SSC) of C-boutons and also in the inner areas of the endoplasmic reticulum (ER). We also described changes in cytoplasmic Y172 immunoreactivity in injured and degenerating MNs. Moreover, we noticed that MNs from NRG1 type III-overexpressing transgenic mice, which show abnormally expanded SSCs, exhibited an increase in the density and size of peripherally located Y172-positive profiles. A similar immunocytochemical pattern to that of the Y172 antibody in MNs was found with a polyclonal antibody against p-c-Jun (Ser63) but not with another polyclonal antibody that recognizes c-Jun phosphorylated at a different site. No differential band patterns were found by western blotting with any of the antibodies against c-Jun or p-c-Jun used in our study. In cultured MNs, Y172-positive oval profiles were distributed in the cell body and proximal dendrites. The in vitro lentiviral-based knockdown of c-Jun resulted in a dramatic decrease in nuclear Y172 immunostaining in MNs without any reduction in the density of cytoplasmic Y172-positive profiles, suggesting that the synaptic antigen recognized by the antibody corresponds to a C-bouton-specific protein other than p-c-Jun. Our results lay the foundation for further studies aimed at identifying this protein and determining its role in this particular type of synapse.

7.
Sci Rep ; 8(1): 9646, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29941967

RESUMEN

Spinal muscular atrophy (SMA) is a severe motor neuron (MN) disease caused by the deletion or mutation of the survival motor neuron 1 (SMN1) gene, which results in reduced levels of the SMN protein and the selective degeneration of lower MNs. The best-known function of SMN is the biogenesis of spliceosomal snRNPs, the major components of the pre-mRNA splicing machinery. Therefore, SMN deficiency in SMA leads to widespread splicing abnormalities. We used the SMN∆7 mouse model of SMA to investigate the cellular reorganization of polyadenylated mRNAs associated with the splicing dysfunction in MNs. We demonstrate that SMN deficiency induced the abnormal nuclear accumulation in euchromatin domains of poly(A) RNA granules (PARGs) enriched in the splicing regulator Sam68. However, these granules lacked other RNA-binding proteins, such as TDP43, PABPN1, hnRNPA12B, REF and Y14, which are essential for mRNA processing and nuclear export. These effects were accompanied by changes in the alternative splicing of the Sam68-dependent Bcl-x and Nrnx1 genes, as well as changes in the relative accumulation of the intron-containing Chat, Chodl, Myh9 and Myh14 mRNAs, which are all important for MN functions. PARG-containing MNs were observed at presymptomatic SMA stage, increasing their number during the symptomatic stage. Moreover, the massive accumulations of poly(A) RNA granules in MNs was accompanied by the cytoplasmic depletion of polyadenylated mRNAs for their translation. We suggest that the SMN-dependent abnormal accumulation of polyadenylated mRNAs and Sam68 in PARGs reflects a severe dysfunction of both mRNA processing and translation, which could contribute to SMA pathogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Núcleo Celular/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Transporte Activo de Núcleo Celular , Animales , Modelos Animales de Enfermedad , Ratones
8.
J Neuropathol Exp Neurol ; 77(7): 577-597, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29767748

RESUMEN

Spinal muscular atrophy (SMA) is characterized by the loss of α-motoneurons (MNs) with concomitant muscle denervation. MN excitability and vulnerability to disease are particularly regulated by cholinergic synaptic afferents (C-boutons), in which Sigma-1 receptor (Sig1R) is concentrated. Alterations in Sig1R have been associated with MN degeneration. Here, we investigated whether a chronic treatment with the Sig1R agonist PRE-084 was able to exert beneficial effects on SMA. We used a model of intermediate SMA, the Smn2B/- mouse, in which we performed a detailed characterization of the histopathological changes that occur throughout the disease. We report that Smn2B/- mice exhibited qualitative differences in major alterations found in mouse models of severe SMA: Smn2B/- animals showed more prominent MN degeneration, early motor axon alterations, marked changes in sensory neurons, and later MN deafferentation that correlated with conspicuous reactive gliosis and altered neuroinflammatory M1/M2 microglial balance. PRE-084 attenuated reactive gliosis, mitigated M1/M2 imbalance, and prevented MN deafferentation in Smn2B/- mice. These effects were also observed in a severe SMA model, the SMNΔ7 mouse. However, the prevention of gliosis and MN deafferentation promoted by PRE-084 were not accompanied by any improvements in clinical outcome or other major pathological changes found in SMA mice.


Asunto(s)
Activación de Macrófagos/efectos de los fármacos , Morfolinas/uso terapéutico , Neuronas Motoras/efectos de los fármacos , Atrofia Muscular Espinal/complicaciones , Degeneración Nerviosa/prevención & control , Neuroglía/efectos de los fármacos , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Sinapsis/efectos de los fármacos , Animales , Axones/patología , Conducta Animal , Gliosis/patología , Gliosis/prevención & control , Ratones , Ratones Endogámicos C57BL , Desnervación Muscular , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Degeneración Nerviosa/patología , Unión Neuromuscular/patología , Receptores sigma/agonistas , Células Receptoras Sensoriales/patología , Receptor Sigma-1
9.
Neurobiol Dis ; 108: 83-99, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28823932

RESUMEN

Spinal muscular atrophy (SMA) is caused by a homozygous deletion or mutation in the survival motor neuron 1 (SMN1) gene that leads to reduced levels of SMN protein resulting in degeneration of motor neurons (MNs). The best known functions of SMN is the biogenesis of spliceosomal snRNPs. Linked to this function, Cajal bodies (CBs) are involved in the assembly of spliceosomal (snRNPs) and nucleolar (snoRNPs) ribonucleoproteins required for pre-mRNA and pre-rRNA processing. Recent studies support that the interaction between CBs and nucleoli, which are especially prominent in neurons, is essential for the nucleolar rRNA homeostasis. We use the SMN∆7 murine model of type I SMA to investigate the cellular basis of the dysfunction of RNA metabolism in MNs. SMN deficiency in postnatal MNs produces a depletion of functional CBs and relocalization of coilin, which is a scaffold protein of CBs, in snRNP-free perinucleolar caps or within the nucleolus. Disruption of CBs is the earliest nuclear sign of MN degeneration. We demonstrate that depletion of CBs, with loss of CB-nucleolus interactions, induces a progressive nucleolar dysfunction in ribosome biogenesis. It includes reorganization and loss of nucleolar transcription units, segregation of dense fibrillar and granular components, retention of SUMO-conjugated proteins in intranucleolar bodies and a reactive, compensatory, up-regulation of mature 18S rRNA and genes encoding key nucleolar proteins, such as upstream binding factor, fibrillarin, nucleolin and nucleophosmin. We propose that CB depletion and nucleolar alterations are essential components of the dysfunction of RNA metabolism in SMA.


Asunto(s)
Nucléolo Celular/metabolismo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , ARN/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Nucléolo Celular/patología , Modelos Animales de Enfermedad , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Ratones Transgénicos , Microscopía Confocal , Microscopía Electrónica , Neuronas Motoras/patología , Atrofia Muscular Espinal/patología , Proteínas Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología
10.
Sci Rep ; 7: 40155, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28065942

RESUMEN

The electric activity of lower motor neurons (MNs) appears to play a role in determining cell-vulnerability in MN diseases. MN excitability is modulated by cholinergic inputs through C-type synaptic boutons, which display an endoplasmic reticulum-related subsurface cistern (SSC) adjacent to the postsynaptic membrane. Besides cholinergic molecules, a constellation of proteins involved in different signal-transduction pathways are clustered at C-type synaptic sites (M2 muscarinic receptors, Kv2.1 potassium channels, Ca2+ activated K+ [SK] channels, and sigma-1 receptors [S1R]), but their collective functional significance so far remains unknown. We have previously suggested that neuregulin-1 (NRG1)/ErbBs-based retrograde signalling occurs at this synapse. To better understand signalling through C-boutons, we performed an analysis of the distribution of C-bouton-associated signalling proteins. We show that within SSC, S1R, Kv2.1 and NRG1 are clustered in highly specific, non-overlapping, microdomains, whereas ErbB2 and ErbB4 are present in the adjacent presynaptic compartment. This organization may define highly ordered and spatially restricted sites for different signal-transduction pathways. SSC associated proteins are disrupted in axotomised MNs together with the activation of microglia, which display a positive chemotactism to C-bouton sites. This indicates that C-bouton associated molecules are also involved in neuroinflammatory signalling in diseased MNs, emerging as new potential therapeutic targets.


Asunto(s)
Neuronas Motoras/metabolismo , Neurregulina-1/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Terminales Presinápticos/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-4/metabolismo , Animales , Células Cultivadas , Retículo Endoplásmico/metabolismo , Ratones , Neuronas Motoras/ultraestructura , Terminales Presinápticos/ultraestructura , Receptores sigma/metabolismo , Canales de Potasio Shab/metabolismo , Transducción de Señal , Receptor Sigma-1
11.
Neurotherapeutics ; 13(1): 198-216, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26582176

RESUMEN

Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder characterized by spinal and brainstem motor neuron (MN) loss and skeletal muscle paralysis. Currently, there is no effective treatment other than supportive care to ameliorate the quality of life of patients with SMA. Some studies have reported that physical exercise, by improving muscle strength and motor function, is potentially beneficial in SMA. The adenosine monophosphate-activated protein kinase agonist 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) has been reported to be an exercise mimetic agent that is able to regulate muscle metabolism and increase endurance both at rest and during exercise. Chronic AICAR administration has been shown to ameliorate the dystrophic muscle phenotype and motor behavior in the mdx mouse, a model of Duchenne muscular dystrophy. Here, we investigated whether chronic AICAR treatment was able to elicit beneficial effects on motor abilities and neuromuscular histopathology in a mouse model of severe SMA (the SMNΔ7 mouse). We report that AICAR improved skeletal muscle atrophy and structural changes found in neuromuscular junctions of SMNΔ7 animals. However, although AICAR prevented the loss of glutamatergic excitatory synapses on MNs, this compound was not able to mitigate MN loss or the microglial and astroglial reaction occurring in the spinal cord of diseased mice. Moreover, no improvement in survival or motor performance was seen in SMNΔ7 animals treated with AICAR. The beneficial effects of AICAR in SMA found in our study are SMN-independent, as no changes in the expression of this protein were seen in the spinal cord and skeletal muscle of diseased animals treated with this compound.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Aminoimidazol Carboxamida/análogos & derivados , Músculo Esquelético/patología , Atrofia Muscular Espinal/tratamiento farmacológico , Ribonucleótidos/uso terapéutico , Aminoimidazol Carboxamida/uso terapéutico , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular Espinal/patología , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Resultado del Tratamiento
12.
FASEB J ; 28(8): 3618-32, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24803543

RESUMEN

C boutons are large, cholinergic, synaptic terminals that arise from local interneurons and specifically contact spinal α-motoneurons (MNs). C boutons characteristically display a postsynaptic specialization consisting of an endoplasmic reticulum-related subsurface cistern (SSC) of unknown function. In the present work, by using confocal microscopy and ultrastructural immunolabeling, we demonstrate that neuregulin-1 (NRG1) accumulates in the SSC of mouse spinal MNs. We also show that the NRG1 receptors erbB2 and erbB4 are presynaptically localized within C boutons, suggesting that NRG1-based retrograde signaling may occur in this type of synapse. In most of the cranial nuclei, MNs display the same pattern of NRG1 distribution as that observed in spinal cord MNs. Conversely, MNs in oculomotor nuclei, which are spared in amyotrophic lateral sclerosis (ALS), lack both C boutons and SSC-associated NRG1. NRG1 in spinal MNs is developmentally regulated and depends on the maintenance of nerve-muscle interactions, as we show after nerve transection experiments. Changes in NRG1 in C boutons were also investigated in mouse models of MN diseases: i.e., spinal muscular atrophy (SMNΔ7) and ALS (SOD1(G93A)). In both models, a transient increase in NRG1 in C boutons occurs during disease progression. These data increase our understanding of the role of C boutons in MN physiology and pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas Aviares/fisiología , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Neurregulina-1/fisiología , Orgánulos/química , Densidad Postsináptica/química , Terminales Presinápticos/química , Esclerosis Amiotrófica Lateral/patología , Animales , Proteínas Aviares/análisis , Embrión de Pollo , Pollos , Receptores ErbB/análisis , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/patología , Atrofia Muscular Espinal/patología , Neurregulina-1/análisis , Neurregulina-1/biosíntesis , Neurregulina-1/genética , Densidad Postsináptica/ultraestructura , Terminales Presinápticos/ultraestructura , Receptor ErbB-2/análisis , Receptor ErbB-4 , Nervio Ciático/lesiones , Nervio Ciático/ultraestructura , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo
13.
J Neuropathol Exp Neurol ; 73(6): 519-35, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24806302

RESUMEN

Motoneuron (MN) cell death is the histopathologic hallmark of spinal muscular atrophy (SMA), although MN loss seems to be a late event. Conversely, disruption of afferent synapses on MNs has been shown to occur early in SMA. Using a mouse model of severe SMA (SMNΔ7), we examined the mechanisms involved in impairment of central synapses. We found that MNs underwent progressive degeneration in the course of SMA, with MN loss still occurring at late stages. Loss of afferent inputs to SMA MNs was detected at embryonic stages, long before MN death. Reactive microgliosis and astrogliosis were present in the spinal cord of diseased animals after the onset of MN loss. Ultrastructural observations indicate that dendrites and microglia phagocytose adjacent degenerating presynaptic terminals. Neuronal nitric oxide synthase was upregulated in SMNΔ7 MNs, and there was an increase in phosphorylated myosin light chain expression in synaptic afferents on MNs; these observations implicate nitric oxide in MN deafferentation and suggest that the RhoA/ROCK pathway is activated. Together, our observations suggest that the earliest change occurring in SMNΔ7 mice is the loss of excitatory glutamatergic synaptic inputs to MNs; reduced excitability may enhance their vulnerability to degeneration and death.


Asunto(s)
Neuronas Motoras/patología , Atrofia Muscular Espinal/patología , Médula Espinal/patología , Sinapsis/patología , Animales , Animales Recién Nacidos , Proteínas de Unión al Calcio/metabolismo , Recuento de Células , Modelos Animales de Enfermedad , Exones/genética , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/ultraestructura , Atrofia Muscular Espinal/complicaciones , Atrofia Muscular Espinal/genética , Degeneración Nerviosa/etiología , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Proteínas del Tejido Nervioso/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Sinapsis/diagnóstico por imagen , Sinapsis/genética , Sinapsis/metabolismo , Ultrasonografía , Regulación hacia Arriba/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
14.
Biomed Res Int ; 2014: 852163, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24877142

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs). Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1) gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used the SOD1(G93A) mouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG) proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/patología , Ganglios Espinales/enzimología , Mutación Missense , Pliegue de Proteína , Células Receptoras Sensoriales/enzimología , Superóxido Dismutasa/metabolismo , Sustitución de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Animales , Ganglios Espinales/patología , Humanos , Ratones , Ratones Transgénicos , Células Receptoras Sensoriales/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
15.
J Neuropathol Exp Neurol ; 69(2): 176-87, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20084016

RESUMEN

We recently reported that degenerating motor neurons of superoxide dismutase mutant 1 (SOD1) rodents exhibit immunoreactivity to P2X(4) antibodies. Neurons with strong P2X(4)-like immunoreactivity (P2X(4)-LIR) do not show an apoptotic phenotype and are often associated with microglial cells that display neuronophagic activity. Western blot analysis showed that P2X(4) antibodies recognize not only the P2X(4) adenosine triphosphate receptor protein but also a hitherto unidentified low-molecular weight band. Here, we identify the molecular counterpart of the strong P2X(4)-LIR observed in association with neuronal degeneration in SOD1 animals. After matrix-assisted laser desorption/ionization time-of-flight, we found that the low-molecular weight P2X(4)-immunoreactive protein was SOD1. Further analysis demonstrated that the P2X(4) antibody recognizes a form of misfolded mutant SOD1 that is expressed in neuronal cells undergoing degeneration but not in glial cells. Cross-reactivity could have been caused by the abnormal exposure of an epitope in the inner hydrophobic region of SOD1 that shared structural homology with the P2X(4)-immunizing peptide used for raising the antibody. No positive P2X(4) immunostaining was detected in mice overexpressing human wild-type SOD1. Intracerebral injections of affinity chromatography-isolated P2X(4)-immunoreactive SOD1 species promote microglial and astroglial activation. We conclude that neuronal SOD1 conformers with P2X(4)-LIR may have pathogenetic relevance in the promotion of neuroinflammation.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Anticuerpos/inmunología , Neuronas/enzimología , Pliegue de Proteína , Receptores Purinérgicos P2/inmunología , Superóxido Dismutasa/inmunología , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Animales Modificados Genéticamente , Astrocitos , Reacciones Cruzadas , Epítopos , Gliosis/etiología , Humanos , Técnicas Inmunológicas , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/patología , Neuronas/patología , Neurotoxinas/inmunología , Neurotoxinas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X4 , Médula Espinal/enzimología , Coloración y Etiquetado , Superóxido Dismutasa/química , Superóxido Dismutasa/genética
16.
J Comp Neurol ; 516(4): 277-90, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19634179

RESUMEN

Glutamate receptor-mediated excitotoxicity and mitochondrial dysfunction appear to play an important role in motoneuron (MN) degeneration in amyotrophic lateral sclerosis (ALS). In the present study we used an organotypic slice culture of chick embryo spinal cord to explore the responsiveness of mature MNs to different excitotoxic stimuli and mitrochondrial inhibition. We found that, in this system, MNs are highly vulnerable to excitotoxins such as glutamate, N-methyl-D-aspartate (NMDA), and kainate (KA), and that the neuroprotective drug riluzole rescues MNs from KA-mediated excitotoxic death. MNs are also sensitive to chronic mitochondrial inhibition induced by malonate and 3-nitropropionic acid (3-NP) in a dose-dependent manner. MN degeneration induced by treatment with mitochondrial toxins displays structural changes similar to those seen following excitotoxicity and can be prevented by applying either the antiexcitotoxic drug 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX) or riluzole. Excitotoxicity results in an increased frequency of normal spontaneous Ca2+ oscillations in MNs, which is followed by a sustained deregulation of intracellular Ca2+. Tolerance to excitotoxic MN death resulting from chronic exposure to excitotoxins correlates with a reduced excitotoxin-induced increase in intracellular Ca2+ and increased thapsigargin-sensitive Ca2+ stores.


Asunto(s)
Agonistas de Aminoácidos Excitadores/toxicidad , Enfermedad de la Neurona Motora/patología , Neuronas Motoras/patología , Degeneración Nerviosa/inducido químicamente , Médula Espinal/patología , Animales , Señalización del Calcio/efectos de los fármacos , Embrión de Pollo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Ácido Glutámico/toxicidad , Ácido Kaínico/toxicidad , Malonatos/toxicidad , Mitocondrias/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , N-Metilaspartato/toxicidad , Degeneración Nerviosa/patología , Fármacos Neuroprotectores/farmacología , Neurotoxinas/toxicidad , Nitrocompuestos/toxicidad , Técnicas de Cultivo de Órganos , Propionatos/toxicidad , Riluzol/farmacología , Médula Espinal/efectos de los fármacos
17.
J Comp Neurol ; 506(1): 75-92, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17990272

RESUMEN

The distribution of the P2X family of ATP receptors was analyzed in a rat model for amyotrophic lateral sclerosis (ALS) expressing mutated human superoxide dismutase (mSOD1(G93A)). We showed that strong P2X(4) immunoreactivity was selectively associated with degenerating motoneurons (MNs) in spinal cord ventral horn. Degenerating P2X(4)-positive MNs did not display apoptotic features such as chromatin condensation, positive TUNEL reaction, or active caspase 3 immunostaining. In contrast, these neurons showed other signs of abnormality, such as loss of the neuronal marker NeuN and recruitment of microglial cells with neuronophagic activity. Similar changes were observed in MNs from the cerebral cortex and brainstem in mSOD1(G93A) in both rat and mice. In addition, P2X(4) immunostaining demonstrated the existence of neuronal degeneration in the locus coeruleus, reticular formation, and Purkinje cells of the cerebellar cortex. It is suggested that abnormal trafficking and proteolytic processing of the P2X(4) receptor protein may underlie these changes.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Receptores Purinérgicos P2/metabolismo , Animales , Animales Modificados Genéticamente , Células del Asta Anterior/metabolismo , Células del Asta Anterior/patología , Anticuerpos Monoclonales , Especificidad de Anticuerpos , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunohistoquímica , Locus Coeruleus/metabolismo , Locus Coeruleus/patología , Masculino , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Células de Purkinje/metabolismo , Células de Purkinje/patología , Núcleos del Rafe/metabolismo , Núcleos del Rafe/patología , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2/inmunología , Receptores Purinérgicos P2X4 , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
18.
J Comp Neurol ; 501(5): 669-90, 2007 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-17299760

RESUMEN

We have developed an organotypic culture technique that uses slices of chick embryo spinal cord, in which trophic requirements for long-term survival of mature motoneurons (MNs) were studied. Slices were obtained from E16 chick embryos and maintained for up to 28 days in vitro (DIV) in a basal medium. Under these conditions, most MNs died. To promote MN survival, 14 different trophic factors were assayed. Among these 14, glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor were the most effective. GDNF was able to promote MN survival for at least 28 DIV. K(+) depolarization or caspase inhibition prevented MN death but also induced degenerative-like changes in rescued MNs. Agents that elevate cAMP levels promoted the survival of a proportion of MNs for at least 7 DIV. Examination of dying MNs revealed that, in addition to cells exhibiting a caspase-3-dependent apoptotic pattern, some MNs died by a caspase-3-independent mechanism and displayed autophagic vacuoles, an extremely convoluted nucleus, and a close association with microglia. This organotypic spinal cord slice culture may provide a convenient model for testing conditions that promote survival of mature-like MNs that are affected in late-onset MN disease such as amyotrophic lateral sclerosis.


Asunto(s)
Apoptosis/fisiología , Neuronas Motoras/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/fisiología , Caspasa 3/metabolismo , Inhibidores de Caspasas , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Embrión de Pollo , AMP Cíclico/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Gliosis/tratamiento farmacológico , Gliosis/metabolismo , Gliosis/fisiopatología , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Microscopía Electrónica de Transmisión , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Factores de Crecimiento Nervioso/farmacología , Técnicas de Cultivo de Órganos , Potasio/metabolismo , Potasio/farmacología , Médula Espinal/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología
19.
J Neurosci Res ; 85(12): 2726-40, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17243177

RESUMEN

In the chick embryo, in ovo application of NMDA from embryonic day (E) 5 to E9 results in selective damage to spinal cord motoneurons (MNs) that undergo a long-lasting degenerative process without immediate cell death. This contrasts with a single application of NMDA on E8, or later, which induces massive necrosis of the whole spinal cord. Chronic MN degeneration after NMDA implies transient incompetence to develop programmed cell death, altered protein processing within secretory pathways, and late activation of autophagy. Chronic NMDA treatment also results in an enlargement of thapsigargin-sensitive Ca(2+) stores. In particular MN pools, such as sartorius-innervating MNs, the neuropeptide CGRP is accumulated in somas, peripheral axons and neuromuscular junctions after chronic NMDA treatment, but not in embryos paralyzed by chronic administration of curare. Intramuscular axonal branching is also altered severely after NMDA: it usually increases, but in some cases a marked reduction can also be observed. Moreover, innervated muscle postsynaptic sites increase by NMDA, but to a lesser extent than by curare. Because some of these results show interesting homologies with MN pathology in human sporadic ALS, the model presented here provides a valuable tool for advancing in the understanding of some cellular and molecular processes particularly involved in this disease.


Asunto(s)
Autofagia/fisiología , Enfermedad de la Neurona Motora/patología , Neuronas Motoras/efectos de los fármacos , Degeneración Nerviosa/fisiopatología , Unión Neuromuscular/patología , Factores de Edad , Animales , Autofagia/efectos de los fármacos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Calcio/metabolismo , Embrión de Pollo/efectos de los fármacos , Curare/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Agonistas de Aminoácidos Excitadores/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Microscopía Electrónica de Transmisión/métodos , Enfermedad de la Neurona Motora/inducido químicamente , Neuronas Motoras/ultraestructura , N-Metilaspartato/farmacología , Unión Neuromuscular/efectos de los fármacos , Fármacos Neuromusculares no Despolarizantes/farmacología , Receptores Nicotínicos/metabolismo , Médula Espinal/patología , Tubulina (Proteína)/metabolismo
20.
Mol Cell Neurosci ; 29(2): 283-98, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15911352

RESUMEN

We previously showed that, in contrast to the acute administration of NMDA, chronic treatment of chick embryos from embryonic day (E) 5 to E9 with this excitotoxin rescues motoneurons (MNs) from programmed cell death. Following this protocol, MNs are also protected against later acute excitotoxic cell death. Previously, we found that MNs treated from E5 to E9 develop long-lasting changes involving vesicular trafficking and other organelle pathology similar to the abnormalities observed in certain chronic neurological diseases including amyotrophic lateral sclerosis (ALS). Here we extend these previous results by showing that protein aggregation within the endoplasmic reticulum (ER) takes place selectively in MNs as an early event of chronic excitotoxicity. Although protein aggregates do not induce appreciable MN death, they foreshadow the activation of a conspicuous autophagic response leading to long-lasting degenerative changes that causes dysfunction but not immediate cell death. Chronic early treatment with NMDA results in a transient (between E6 and E10) lack of vulnerability to undergo cell death induced by different types of stimuli. It is suggested that blockade of protein translation in stressed ER may inhibit apoptosis in NMDA-treated MNs. However, in embryos older than E12, degenerating MNs are sensitized to die after limb ablation (axotomy) and accumulate hyperphosphorylated neurofilaments. Moreover, chronic NMDA treatment does not induce the upregulation of molecular chaperones in spinal cord. These results represent a new model of glutamate receptor-mediated neurotoxicity that selectively occurs in spinal cord MNs and also demonstrate an experimental system that may be valuable for understanding the mechanisms involved in chronic MN degeneration and in certain cytological hallmarks of ALS-diseased MNs such as inclusion bodies.


Asunto(s)
Células del Asta Anterior/metabolismo , Apoptosis/fisiología , Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Cuerpos de Inclusión/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Glutamato/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Células del Asta Anterior/patología , Células del Asta Anterior/ultraestructura , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Axotomía , Embrión de Pollo , Modelos Animales de Enfermedad , Retículo Endoplásmico/patología , Retículo Endoplásmico/ultraestructura , Agonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Cuerpos de Inclusión/patología , Cuerpos de Inclusión/ultraestructura , Microscopía Electrónica de Transmisión , Modelos Neurológicos , N-Metilaspartato/farmacología , Proteínas de Neurofilamentos/metabolismo , Neurotoxinas/farmacología , Biosíntesis de Proteínas/fisiología , Receptores de Glutamato/efectos de los fármacos , Estrés Fisiológico/metabolismo , Estrés Fisiológico/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...