Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Psychiatry ; 15: 1406687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835543

RESUMEN

Introduction: Early social environment, either positive or negative, shapes the adult brain. Communal nesting (CN), a naturalistic setting in which 2-3 females keep their pups in a single nest sharing care-giving behavior, provides high level of peer interaction for pups. Early social isolation (ESI) from dam and siblings represents, instead, an adverse condition providing no peer interaction. Methods: We investigated whether CN (enrichment setting) might influence the response to ESI (impoverishment setting) in terms of social behavior and glutamate system in the medial prefrontal cortex (mPFC) of adult and adolescent male and female rats. Results: Pinning (a rewarding component of social play behavior) was significantly more pronounced in males than in females exposed to the combination of CN and ESI. CN sensitized the glutamate synapse in the mPFC of ESI-exposed male, but not female, rats. Accordingly, we observed (i) a potentiation of the glutamatergic neurotransmission in the mPFC of both adolescent and adult males, as shown by the recruitment of NMDA receptor subunits together with increased expression/activation of PSD95, SynCAM 1, Synapsin I and αCaMKII; (ii) a de-recruiting of NMDA receptors from active synaptic zones of same-age females, together with reduced expression/activation of the above-mentioned proteins, which might reduce the glutamate transmission. Whether similar sex-dependent glutamate homeostasis modulation occurs in other brain areas remains to be elucidated. Discussion: CN and ESI interact to shape social behavior and mPFC glutamate synapse homeostasis in an age- and sex-dependent fashion, suggesting that early-life social environment may play a crucial role in regulating the risk to develop psychopathology.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38901757

RESUMEN

OBJECTIVE: Anorexia nervosa (AN) is characterized by hyperactivation of the hypothalamic-pituitary-adrenal axis and cognitive deficits. However, little is known about the rapid non-genomic stress response involvement. This study investigates the molecular, structural and behavioral signatures of the anorexic phenotype induction in female rats on stress-related mechanisms in the hippocampus. METHOD: Female adolescent rats, exposed to the combination of food restriction and wheel access, i.e., the activity-based anorexia (ABA) protocol, were sacrificed in the acute phase of the pathology (postnatal day [P]42) or following a 7-day recovery period (P49). RESULTS: ABA rats, in addition to body weight loss and increased wheel activity, alter their pattern of activity over days, showing increased food anticipatory activity, a readout of their motivation to engage in intense physical activity. Corticosterone plasma levels were enhanced at P42 while reduced at P49 in ABA rats. In the membrane fraction of the hippocampus, we found reduced glucocorticoid receptor levels together with reduced expression of caldesmon, n-cadherin and neuroligin-1, molecular markers of cytoskeletal stability and glutamatergic homeostasis. Accordingly, structural analyses revealed reduced dendritic spine density, a reduced number of mushroom-shaped spines, together with an increased number of thin-shaped spines. These events are paralleled by impairment in spatial memory measured in the spatial order object recognition test. These effects persisted even when body weight of ABA rats was restored. DISCUSSION: Our findings indicate that ABA induction orchestrates hippocampal maladaptive structural and functional plasticity, contributing to cognitive deficits, providing a putative mechanism that could be targeted in AN patients.


Asunto(s)
Hipocampo , Animales , Femenino , Hipocampo/metabolismo , Ratas , Memoria Espacial/fisiología , Anorexia/metabolismo , Anorexia/fisiopatología , Anorexia/patología , Corticosterona/sangre , Estrés Psicológico/fisiopatología , Estrés Psicológico/metabolismo , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/patología , Ratas Wistar , Receptores de Glucocorticoides/metabolismo , Anorexia Nerviosa/metabolismo , Anorexia Nerviosa/fisiopatología , Anorexia Nerviosa/patología , Modelos Animales de Enfermedad
3.
Nutrients ; 16(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38674862

RESUMEN

Leptin is an appetite-regulating adipokine that is reduced in patients with anorexia nervosa (AN), a psychiatric disorder characterized by self-imposed starvation, and has been linked to hyperactivity, a hallmark of AN. However, it remains unknown how leptin receptor (LepR) and its JAK2-STAT3 downstream pathway in extrahypothalamic brain areas, such as the dorsal (dHip) and ventral (vHip) hippocampus, crucial for spatial memory and emotion regulation, may contribute to the maintenance of AN behaviors. Taking advantage of the activity-based anorexia (ABA) model (i.e., the combination of food restriction and physical activity), we observed reduced leptin plasma levels in adolescent female ABA rats at the acute phase of the disorder [post-natal day (PND) 42], while the levels increased over control levels following a 7-day recovery period (PND49). The analysis of the intracellular leptin pathway revealed that ABA rats showed an overall decrease of the LepR/JAK2/STAT3 signaling in dHip at both time points, while in vHip we observed a transition from hypo- (PND42) to hyperactivation (PND49) of the pathway. These changes might add knowledge on starvation-induced fluctuations in leptin levels and in hippocampal leptin signaling as initial drivers of the transition from adaptative mechanisms to starvation toward the maintenance of aberrant behaviors typical of AN patients, such as perpetuating restraint over eating.


Asunto(s)
Anorexia , Hipocampo , Janus Quinasa 2 , Leptina , Receptores de Leptina , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Femenino , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Hipocampo/metabolismo , Leptina/sangre , Anorexia/etiología , Anorexia/metabolismo , Ratas , Receptores de Leptina/metabolismo , Anorexia Nerviosa/metabolismo , Anorexia Nerviosa/sangre , Modelos Animales de Enfermedad , Adaptación Fisiológica
4.
J Affect Disord ; 351: 128-142, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280571

RESUMEN

BACKGROUND: Bipolar disorder (BD) is a highly burdensome psychiatric disorder characterized by alternating states of mania and depression. A major challenge in the clinic is the switch from depression to mania, which is often observed in female BD patients during antidepressant treatment such as imipramine. However, the underlying neural basis is unclear. METHODS: To investigate the potential neuronal pathways, serotonin transporter knockout (SERT KO) rats, an experimental model of female BD patients, were subjected to a battery of behavioral tests under chronic treatment of the antidepressant imipramine. In addition, the expression of brain-derived neurotrophic factor (BDNF) and its downstream signaling was examined in the prefrontal cortex. RESULTS: Chronic exposure to imipramine reduced anxiety and sociability and problem-solving capacity, and increased thigmotaxis and day/night activity in all animals, but specifically in female SERT KO rats, compared to female wild-type (WT) rats. Further, we found an activation of BDNF-TrkB-Akt pathway signaling in the infralimbic, but not prelimbic, cortex after chronic imipramine treatment in SERT KO, but not WT, rats. LIMITATIONS: Repeated testing behaviors could potentially affect the results. Additionally, the imipramine induced changes in behavior and in the BDNF system were measured in separate animals. CONCLUSIONS: Our study indicates that female SERT KO rats, which mirror the female BD patients with the 5-HTTLPR s-allele, are at higher risk of a switch to mania-like behaviors under imipramine treatment. Activation of the BDNF-TrkB-Akt pathway in the infralimbic cortex might contribute to this phenotype, but causal evidence remains to be provided.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Imipramina , Humanos , Ratas , Femenino , Animales , Imipramina/farmacología , Imipramina/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Manía/metabolismo , Depresión , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antidepresivos/farmacología , Hipocampo/metabolismo
5.
Curr Neuropharmacol ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37711124

RESUMEN

BACKGROUND: The mechanisms underlying the action of lithium (LiCl) in bipolar disorder(BD) are still far from being completely understood. Previous evidence has revealed that BD is characterized by glutamate hyperexcitability, suggesting that LiCl may act, at least partially, by toning down glutamatergic signaling abnormalities. OBJECTIVE: In this study, taking advantage of western blot and confocal microscopy, we used a combination of integrative molecular and morphological approaches in rats exposed to repeated administration of LiCl at a therapeutic dose (between 0.6 and 1.2 mmol/l) and sacrificed at two different time points, i.e., 24 hours and 7 days after the last exposure. RESULTS: We report that repeated LiCl treatment activates multiple, parallel, but also converging forms of compensatory neuroplasticity related to glutamatergic signaling. More specifically, LiCl promoted a wave of neuroplasticity in the hippocampus, involving the synaptic recruitment of GluN2A-containing NMDA receptors, GluA1-containing AMPA receptors, and the neurotrophin BDNF that are indicative of a more plastic spine. The latter is evidenced by morphological analyses showing changes in dendritic spine morphology, such as increased length and head diameter of such spines. These changes may counteract the potentially negative extra-synaptic movements of GluN2B-containing NMDA receptors as well as the increase in the formation of GluA2-lacking Ca2+-permeable AMPA receptors. CONCLUSION: Our findings highlight a previously unknown cohesive picture of the glutamatergic implications of LiCl action that persist long after the end of its administration, revealing for the first time a profound and persistent reorganization of the glutamatergic postsynaptic density receptor composition and structure.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37442333

RESUMEN

In humans, cocaine abuse during adolescence poses a significant risk for developing cognitive deficits later in life. Among the regions responsible for cognitive processes, the medial prefrontal cortex (mPFC) modulates temporal order information via mechanisms involving the mammalian-target of rapamycin (mTOR)-mediated pathway and protein synthesis regulation. Accordingly, our goal was to study the effect of repeated cocaine exposure during both adolescence and adulthood on temporal memory by studying the mTOR pathway in the mPFC. Adolescent or adult rats underwent repeated cocaine injections for 15 days and, after two weeks of withdrawal, engaged in the temporal order object recognition (TOOR) test. We found that repeated cocaine exposure during adolescence impaired TOOR performance, while control or adult-treated animals showed no impairments. Moreover, activation of the mTOR-S6-eEF2 pathway following the TOOR test was diminished only in the adolescent cocaine-treated group. Notably, inhibition of the mTOR-mediated pathway by rapamycin injection impaired TOOR performance in naïve adolescent and adult animals, revealing this pathway to be a critical component in regulating recency memory. Our data indicate that withdrawal from cocaine exposure impairs recency memory via the dysregulation of protein translation mechanisms, but only when cocaine is administered during adolescence.


Asunto(s)
Cocaína , Humanos , Ratas , Animales , Adolescente , Cocaína/farmacología , Sirolimus/farmacología , Memoria , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Corteza Prefrontal/metabolismo , Mamíferos/metabolismo
7.
Biomolecules ; 13(5)2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37238676

RESUMEN

The key element of dopamine (DA) neurotransmission is undoubtedly DA transporter (DAT), a transmembrane protein responsible for the synaptic reuptake of the mediator. Changes in DAT's function can be a key mechanism of pathological conditions associated with hyperdopaminergia. The first strain of gene-modified rodents with a lack of DAT were created more than 25 years ago. Such animals are characterized by increased levels of striatal DA, resulting in locomotor hyperactivity, increased levels of motor stereotypes, cognitive deficits, and other behavioral abnormalities. The administration of dopaminergic and pharmacological agents affecting other neurotransmitter systems can mitigate those abnormalities. The main purpose of this review is to systematize and analyze (1) known data on the consequences of changes in DAT expression in experimental animals, (2) results of pharmacological studies in these animals, and (3) to estimate the validity of animals lacking DAT as models for discovering new treatments of DA-related disorders.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Roedores , Animales , Roedores/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Transmisión Sináptica
8.
Biomolecules ; 13(3)2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36979451

RESUMEN

Dopamine (DA) and glutamate interact, influencing neural excitability and promoting synaptic plasticity. However, little is known regarding the molecular mechanisms underlying this crosstalk. Since perturbation of DA-AMPA receptor interaction might sustain pathological conditions, the major aim of our work was to evaluate the effect of the hyperactive DA system on the AMPA subunit composition, trafficking, and membrane localization in the prefrontal cortex (PFC). Taking advantage of dopamine transporter knock-out (DAT-/-) rats, we found that DA overactivity reduced the translation of cortical AMPA receptors and their localization at both synaptic and extra-synaptic sites through, at least in part, altered intracellular vesicular sorting. Moreover, the reduced expression of AMPA receptor-specific anchoring proteins and structural markers, such as Neuroligin-1 and nCadherin, likely indicate a pattern of synaptic instability. Overall, these data reveal that a condition of hyperdopaminergia markedly alters the homeostatic plasticity of AMPA receptors, suggesting a general destabilization and depotentiation of the AMPA-mediated glutamatergic neurotransmission in the PFC. This effect might be functionally relevant for disorders characterized by elevated dopaminergic activity.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Receptores AMPA , Ratas , Animales , Receptores AMPA/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Dopamina/metabolismo , Receptores Dopaminérgicos/metabolismo , Corteza Prefrontal/metabolismo
9.
Front Behav Neurosci ; 16: 1087075, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570702

RESUMEN

Introduction: Anorexia nervosa (AN) is a severe psychiatric disorder characterized by a pathological fear of gaining weight, excessive physical exercise, and emotional instability. Since the amygdala is a key region for emotion processing and BDNF has been shown to play a critical role in this process, we hypothesized that alteration in the amygdalar BDNF system might underline vulnerability traits typical of AN patients. Methods: To this end, adolescent female rats have been exposed to the Activity-Based Anorexia (ABA) protocol, characterized by the combination of caloric restriction and intense physical exercise. Results: The induction of the anorexic phenotype caused hyperactivity and body weight loss in ABA animals. These changes were paralleled by amygdalar hyperactivation, as measured by the up-regulation of cfos mRNA levels. In the acute phase of the pathology, we observed reduced Bdnf exon IX, exon IV, and exon VI gene expression, while mBDNF protein levels were enhanced, an increase that was, instead, uncoupled from its downstream signaling as the phosphorylation of TrkB, Akt, and S6 in ABA rats were reduced. Despite the body weight recovery observed 7 days later, the BDNF-mediated signaling was still downregulated at this time point. Discussion: Our findings indicate that the BDNF system is downregulated in the amygdala of adolescent female rats under these experimental conditions, which mimic the anorexic phenotype in humans, pointing to such dysregulation as a potential contributor to the altered emotional processing observed in AN patients. In addition, since the modulation of BDNF levels is observed in other psychiatric conditions, the persistent AN-induced changes of the BDNF system in the amygdala might contribute to explaining the onset of comorbid psychiatric disorders that persist in patients even beyond recovery from AN.

10.
Biomedicines ; 10(8)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36009400

RESUMEN

Cannabidiol (CBD) is a phytocannabinoid contained in the Cannabis sativa plant, devoid of psychotomimetic effects but with a broad-spectrum pharmacological activity. Because of its pharmacological profile and its ability to counteract the psychoactive Δ9-tetrahydrocannabinol (Δ9THC), CBD may be a potential treatment for several psychiatric and neurodegenerative disorders. In this study, we performed a dose-response evaluation of CBD modulatory effects on BDNF, a neurotrophin subserving pleiotropic effects on the brain, focusing on the cortico-striatal pathway for its unique role in the brain trafficking of BDNF. Male adult rats were exposed to single and repeated CBD treatments at different dosing regimen (5, 15, and 30 mg/kg), to investigate the rapid modulation of the neurotrophin (1 h after the single treatment) as well as a potential drug-free time point (24 h after the repeated treatment). We show here, for the first time, that CBD can be found in the rat brain and, specifically, in the medial prefrontal cortex (mPFC) following single or repeated exposure. In fact, we found that CBD is present in the mPFC of rats treated either acutely or repeatedly with the phytocannabinoid, with a clear dose-response profile. From a molecular standpoint, we found that single, but not repeated, CBD exposure upregulates BDNF in the mPFC, while the repeated exposure increased BDNF only in the striatum, with a slight decrease in the mPFC. Together, these data reveal a CBD dose-dependent and anatomically specific modulation of BDNF, which may be functionally relevant and may represent an added value for CBD as a supplement.

11.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887159

RESUMEN

Worldwide, approximately 27 million people are affected by Alzheimer's disease (AD). AD pathophysiology is believed to be caused by the deposition of the ß-amyloid peptide (Aß). Aß can reduce long-term potentiation (LTP), a form of synaptic plasticity that is closely associated with learning and memory and involves postsynaptic glutamate receptor phosphorylation and trafficking. Moreover, Aß seems to be able to reduce glutamatergic transmission by increasing the endocytosis of NMDA receptors. Trace amines (TAs) are biogenic amines that are structurally similar to monoamine neurotransmitters. TAs bind to G protein-coupled receptors, called TAARs (trace amine-associated receptors); the best-studied member of this family, TAAR1, is distributed in the cortical and limbic structures of the CNS. It has been shown that the activation of TAAR1 can rescue glutamatergic hypofunction and that TAAR1 can modulate glutamate NMDA receptor-related functions in the frontal cortex. Several lines of evidence also suggest the pro-cognitive action of TAAR1 agonists in various behavioural experimental protocols. Thus, we studied, in vitro, the role of the TAAR1 agonist RO5256390 on basal cortical glutamatergic transmission and tested its effect on Aß-induced dysfunction. Furthermore, we investigated, in vivo, the role of TAAR1 in cognitive dysfunction induced by Aß infusion in Aß-treated mice. In vitro data showed that Aß 1-42 significantly decreased NMDA cell surface expression while the TAAR1 agonist RO5256390 promoted their membrane insertion in cortical cells. In vivo, RO5256390 showed a mild pro-cognitive effect, as demonstrated by the better performance in the Y maze test in mice treated with Aß. Further studies are needed to better understand the interplay between TAAR1/Aß and glutamatergic signalling, in order to evaluate the eventual beneficial effect in different experimental paradigms and animal models. Taken together, our data indicate that TAAR1 agonism may provide a novel therapeutic approach in the treatments of disorders involving Aß-induced cognitive impairments, such as AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/tratamiento farmacológico , Aminas/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Humanos , Ratones , Ratones Noqueados , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato
12.
J Neurochem ; 161(4): 350-365, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35257377

RESUMEN

Patients suffering from anorexia nervosa (AN) display altered neural activity, morphological, and functional connectivity in the fronto-striatal circuit. In addition, hypoglutamatergic transmission and aberrant excitability of the medial prefrontal cortex (mPFC) observed in AN patients might underpin cognitive deficits that fuel the vicious cycle of dieting behavior. To provide a molecular mechanism, we employed the activity-based anorexia (ABA) rat model, which combines the two hallmarks of AN (i.e., caloric restriction and intense physical exercise), to evaluate structural remodeling together with alterations in the glutamatergic signaling in the mPFC and their impact on temporal memory, as measured by the temporal order object recognition (TOOR) test. Our data indicate that the combination of caloric restriction and intense physical exercise altered the homeostasis of the glutamate synapse and reduced spine density in the mPFC. These events, paralleled by an impairment in recency discrimination in the TOOR test, are associated with the ABA endophenotype. Of note, after a 7-day recovery period, body weight was recovered and the mPFC structure normalized but ABA rats still exhibited reduced post-synaptic stability of AMPA and NMDA glutamate receptors associated with cognitive dysfunction. Taken together, these data suggest that the combination of reduced food intake and hyperactivity affects the homeostasis of the excitatory synapse in the mPFC contributing to maintain the aberrant behaviors observed in AN patients. Our findings, by identifying novel potential targets of AN, may contribute to more effectively direct the therapeutic interventions to ameliorate, at least, the cognitive effects of this psychopathology.


Asunto(s)
Anorexia , Ácido Glutámico , Animales , Cognición , Ácido Glutámico/farmacología , Humanos , Corteza Prefrontal , Ratas , Receptores de N-Metil-D-Aspartato , Sinapsis
13.
Br J Pharmacol ; 179(14): 3727-3739, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35174489

RESUMEN

BACKGROUND AND PURPOSE: It has been well established that glutamate in the nucleus accumbens (NAc) plays a critical role in the motivation to take drugs of abuse. We have previously demonstrated that rats with ablation of the serotonin transporter (SERT-/- rats) show increased cocaine intake reminiscent of compulsivity. EXPERIMENTAL APPROACH: By comparing SERT-/- to SERT+/+ rats, we investigated whether SERT deletion influences glutamate homeostasis under control conditions as well as after short access (ShA: 1 h per session) or long access (LgA: 6 h per session) to cocaine self-administration. Rats were killed at 24 h after the last self-administration session for ex vivo molecular analyses of the main determinants of the glutamate system, including transporters (vesicular and glial), receptors (main post-synaptic subunits of NMDA and AMPA receptors together with the metabotropic subunit mGLUR5), and scaffolding proteins (SAP102, SAP97, and GRIP) in the NAc shell (sNAc) KEY RESULTS: In cocaine-naive animals, SERT deletion was associated with changes indicative for a reduction in glutamate signalling. ShA and LgA exposure led to a further dysregulation of the glutamatergic synapse. CONCLUSION: SERT deletion may render the glutamatergic synapses of the NAc shell more responsive to both ShA and LgA intake of cocaine.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Cocaína/farmacología , Trastornos Relacionados con Cocaína/metabolismo , Ácido Glutámico/metabolismo , Núcleo Accumbens/metabolismo , Ratas , Autoadministración , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
14.
Br J Pharmacol ; 179(17): 4254-4264, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33880773

RESUMEN

BACKGROUND AND PURPOSE: It is well established that the nucleus accumbens and glutamate play a critical role in the motivation to take drugs of abuse. We have previously demonstrated that rats with ablation of the serotonin (5-HT) transporter (SERT-/- rats) show increased cocaine intake reminiscent of compulsivity. EXPERIMENTAL APPROACH: By comparing SERT-/- to SERT+/+ rats, we set out to explore whether SERT deletion influences glutamate neurotransmission under control conditions as well as after short access (1 h/session) or long access (6 h/session) to cocaine self-administration. KEY RESULTS: Rats were killed at 24 h after the final self-administration session for ex vivo molecular analyses of the glutamate system (vesicular and glial transporters, post-synaptic subunits of NMDA and AMPA receptors and their related scaffolding proteins). Such analyses were undertaken in the nucleus accumbens core. In cocaine-naïve animals, SERT deletion evoked widespread abnormalities in markers of glutamatergic neurotransmission that, overall, indicate a reduction of glutamate signalling. These results suggest that 5-HT is pivotal for the maintenance of accumbal glutamate homeostasis. We also found that SERT deletion altered glutamate homeostasis mainly after long access, but not short access, to cocaine. CONCLUSION AND IMPLICATIONS: Our findings reveal that SERT deletion may sensitize the glutamatergic synapses of the nucleus accumbens core to the long access but not short access, intake of cocaine. LINKED ARTICLES: This article is part of a themed issue on New discoveries and perspectives in mental and pain disorders. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.17/issuetoc.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Trastornos Relacionados con Cocaína/metabolismo , Ácido Glutámico/metabolismo , Núcleo Accumbens/metabolismo , Ratas , Ratas Sprague-Dawley , Autoadministración , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Sinapsis/metabolismo
15.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34299015

RESUMEN

Synthetic cathinones have gained popularity among young drug users and are widely used in the clandestine market. While the cathinone-induced behavioral profile has been extensively investigated, information on their neuroplastic effects is still rather fragmentary. Accordingly, we have exposed male mice to a single injection of MDPV and α-PVP and sacrificed the animals at different time points (i.e., 30 min, 2 h, and 24 h) to have a rapid readout of the effect of these psychostimulants on neuroplasticity in the frontal lobe and hippocampus, two reward-related brain regions. We found that a single, low dose of MDPV or α-PVP is sufficient to alter the expression of neuroplastic markers in the adult mouse brain. In particular, we found increased expression of the transcription factor Npas4, increased ratio between the vesicular GABA transporter and the vesicular glutamate transporter together with changes in the expression of the neurotrophin Bdnf, confirming the widespread impact of these cathinones on brain plasticity. To sum up, exposure to low dose of cathinones can impair cortical and hippocampal homeostasis, suggesting that abuse of these cathinones at much higher doses, as it occurs in humans, could have an even more profound impact on neuroplasticity.


Asunto(s)
Alcaloides/farmacología , Lóbulo Frontal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Benzodioxoles/farmacología , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Inhibidores de Captación de Dopamina/farmacología , Lóbulo Frontal/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Pentanonas/farmacología , Pirrolidinas/farmacología , Ácido gamma-Aminobutírico/metabolismo , Cathinona Sintética
16.
Addict Biol ; 26(5): e13012, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33511707

RESUMEN

Previous studies have shown that adolescent exposure to cocaine increases drug use in adulthood, albeit incubation of cocaine seeking was found to be attenuated in rats trained to self-administer cocaine during adolescence. We here hypothesize that adolescent exposure to cocaine could alter the rewarding properties of the psychostimulant in adulthood. By employing two of the most widely used animal-experimental-preclinical models to investigate drug addiction, we evaluated whether contingent versus non-contingent cocaine self-administration during adolescence modulates its rewarding threshold in adulthood evaluated by conditioned place preference (CPP). Cocaine self-administration during adolescence increases the rewarding threshold in adulthood; CPP for cocaine was observed at the higher (20 mg/kg), but not at the lower (10 mg/kg), dose employed. Rats exposed to either contingent or non-contingent cocaine during adolescence exhibited the same behavior in the CPP paradigm suggesting that, under our experimental conditions, cocaine rewarding properties are shaped by the psychostimulant itself and not by its motivational effects. From a mechanistic standpoint, the preference for the 20 mg/kg cocaine-paired side in a CPP paradigm appears to depend, at least partially, upon the formation of GluA2-lacking Ca2+ -permeable AMPA receptors and the consequent increase of αCaMKII activity in the NAc, both of which are instead reduced when the 10 mg/kg dose was used. In conclusion, contingent or non-contingent cocaine exposure during adolescence desensitizes adult animals to a rewarding dose of cocaine (10 mg/kg) elevating the rewarding threshold necessary (20 mg/kg) to drive conditioned place preference, an effect that may predispose to higher consumption of cocaine during adulthood.


Asunto(s)
Cocaína/farmacología , Condicionamiento Clásico/efectos de los fármacos , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Femenino , Masculino , Motivación , Ratas , Receptores AMPA , Recompensa , Autoadministración
17.
Br J Pharmacol ; 177(19): 4532-4547, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32721055

RESUMEN

BACKGROUND AND PURPOSE: Amphetamine (AMPH) use disorder is a serious health concern, but, surprisingly, little is known about the vulnerability to the moderate and compulsive use of this psychostimulant and its underlying mechanisms. Previous research showed that inherited serotonin transporter (SERT) down-regulation increases the motor response to cocaine, as well as moderate (as measured during daily 1-h self-administration sessions) and compulsive (as measured during daily 6-h self-administration sessions) intake of this psychostimulant. Here, we sought to investigate whether these findings generalize to AMPH and the underlying mechanisms in the nucleus accumbens. EXPERIMENTAL APPROACH: In serotonin transporter knockout (SERT-/- ) and wild-type control (SERT+/+ ) rats, we assessed the locomotor response to acute AMPH and i.v. AMPH self-administration under short access (ShA: 1-h daily sessions) and long access (LgA: 6-h daily sessions) conditions. Twenty-four hours after AMPH self-administration, we analysed the expression of glutamate system components in the nucleus accumbens shell and core. KEY RESULTS: We found that SERT-/- animals displayed an increased AMPH-induced locomotor response and increased AMPH self-administration under LgA but not ShA conditions. Further, we observed changes in the vesicular and glial glutamate transporters, NMDA and AMPA receptor subunits, and their respective postsynaptic scaffolding proteins as function of SERT genotype and AMPH exposure (baseline, ShA, and LgA), specifically in the nucleus accumbens shell. CONCLUSION AND IMPLICATIONS: We demonstrate that SERT gene deletion increases the psychomotor and reinforcing effects of AMPH and that the latter is potentially mediated, at least in part, by homeostatic changes in the glutamatergic synapse of the nucleus accumbens shell and/or core.


Asunto(s)
Cocaína , Núcleo Accumbens , Anfetamina/farmacología , Animales , Ácido Glutámico , Ratas , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...