Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Transplant ; 20(10): 2703-2714, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32342638

RESUMEN

Instant blood-mediated inflammatory reaction (IBMIR) causes significant destruction of islets transplanted intraportally. Myeloid cells are a major culprit of IBMIR. Given the critical role of CD47 as a negative checkpoint for myeloid cells, we hypothesized that the presence of CD47 on islets will minimize graft loss by mitigating IBMIR. We herein report the generation of a chimeric construct, SA-CD47, encompassing the extracellular domain of CD47 modified to include core streptavidin (SA). SA-CD47 protein was expressed in insect cells and efficiently displayed on biotin-modified mouse islet surface without a negative impact on their viability and function. Rat cells engineered with SA-CD47 were refractory to phagocytosis by mouse macrophages. SA-CD47-engineered islets showed intact structure and minimal infiltration by CD11b+ granulocytes/macrophages as compared with SA-engineered controls in an in vitro loop assay mitigating IBMIR. In a syngeneic marginal mass model of intraportal transplantation, SA-CD47-engineered islets showed better engraftment and function as compared with the SA-control group (87.5% vs 14.3%). Engraftment was associated with low levels of intrahepatic inflammatory cells and mediators of islet destruction, including high-mobility group box-1, tissue factor, and IL-1ß. These findings support the use of CD47 as an innate immune checkpoint to mitigate IBMIR for enhanced islet engraftment with translational potential.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Antígeno CD47 , Proteínas de Punto de Control Inmunitario , Inflamación , Ratones , Ratas , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...