Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 21(6): 3027-3039, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38755753

RESUMEN

This study presents a novel approach by utilizing poly(vinylpyrrolidone)s (PVPs) with various topologies as potential matrices for the liquid crystalline (LC) active pharmaceutical ingredient itraconazole (ITZ). We examined amorphous solid dispersions (ASDs) composed of ITZ and (i) self-synthesized linear PVP, (ii) self-synthesized star-shaped PVP, and (iii) commercial linear PVP K30. Differential scanning calorimetry, X-ray diffraction, and broad-band dielectric spectroscopy were employed to get a comprehensive insight into the thermal and structural properties, as well as global and local molecular dynamics of ITZ-PVP systems. The primary objective was to assess the influence of PVPs' topology and the composition of ASD on the LC ordering, changes in the temperature of transitions between mesophases, the rate of their restoration, and finally the solubility of ITZ in the prepared ASDs. Our research clearly showed that regardless of the PVP type, both LC transitions, from smectic (Sm) to nematic (N) and from N to isotropic (I) phases, are effectively suppressed. Moreover, a significant difference in the miscibility of different PVPs with the investigated API was found. This phenomenon also affected the solubility of API, which was the greatest, up to 100 µg/mL in the case of starPVP 85:15 w/w mixture in comparison to neat crystalline API (5 µg/mL). Obtained data emphasize the crucial role of the polymer's topology in designing new pharmaceutical formulations.


Asunto(s)
Rastreo Diferencial de Calorimetría , Itraconazol , Cristales Líquidos , Povidona , Solubilidad , Difracción de Rayos X , Itraconazol/química , Cristales Líquidos/química , Povidona/química , Rastreo Diferencial de Calorimetría/métodos , Difracción de Rayos X/métodos , Polímeros/química , Antifúngicos/química , Composición de Medicamentos/métodos , Cristalización , Química Farmacéutica/métodos
2.
Nanoscale ; 16(13): 6636-6647, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38481367

RESUMEN

The properties of confined materials are assumed to be governed by the phenomena occurring at the interface, especially the formation of an irreversible adsorption layer (IAL), which has been widely discussed and detected in the case of thin polymer films and silica nanoparticles. In this paper, we present a novel experimental approach allowing us to reveal the formation of an IAL in two phenyl alcohols infiltrated into various mesoporous silica templates. The proposed methodology (based on evaporation) allowed us to detect the alterations in the OH and aromatic CH stretching vibration bands in infrared spectra, which were considered as evidence of the existence of IAL in constrained systems. Such interpretation was also confirmed by complementary molecular dynamics (MD) simulations that indicated the creation of much stronger hydrogen bonds between alcohols and silanol units than between alcohols themselves. Moreover, computation allowed us to identify additional enormously strong π-stacking interactions between phenyl rings stabilizing the interfacial layer. MD simulations also shed new light on the clustering process of both alcohols under confinement. Simulation and experimental data presented in this paper allowed a much deeper understanding of the processes occurring at the interface-formation of IAL and the association phenomenon at the nanoscale level.

3.
Pharmaceutics ; 16(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276506

RESUMEN

In this paper, we propose one-step synthetic strategies for obtaining well-defined linear and star-shaped polyvinylpyrrolidone (linPVP and starPVP). The produced macromolecules and a commercial PVP K30 with linear topology were investigated as potential matrices for suppressing metronidazole (MTZ) crystallization. Interestingly, during the formation of binary mixtures (BMs) containing different polymers and MTZ, we found that linear PVPs exhibit maximum miscibility with the drug at a 50:50 weight ratio (w/w), while the star-shaped polymer mixes with MTZ even at a 30:70 w/w. To explain these observations, comprehensive studies of MTZ-PVP formulations with various contents of both components were performed using Fourier-transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. The obtained results clearly showed that the polymer's topology plays a significant role in the type of interactions occurring between the matrix and MTZ. Additionally, we established that for MTZ-PVP 50:50 and 75:25 w/w BMs, linear polymers have the most substantial impact on inhibiting the crystallization of API. The star-shaped macromolecule turned out to be the least effective in stabilizing amorphous MTZ at these polymer concentrations. Nevertheless, long-term structural investigations of the MTZ-starPVP 30:70 w/w system (which is not achievable for linear PVPs) demonstrated its complete amorphousness for over one month.

4.
Mol Pharm ; 20(11): 5655-5667, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37756382

RESUMEN

The enhancement of the properties (i.e., poor solubility and low bioavailability) of currently available active pharmaceutical ingredients (APIs) is one of the major goals of modern pharmaceutical sciences. Among different strategies, a novel and innovative route to reach this milestone seems to be the application of nanotechnology, especially the incorporation of APIs into porous membranes composed of pores of nanometric size and made of nontoxic materials. Therefore, in this work, taking the antipsychotic API aripiprazole (APZ) infiltrated into various types of mesoporous matrices (anodic aluminum oxide, native, and silanized silica) characterized by similar pore diameters (d = 8-10 nm) as an example, we showed the advantage of incorporated systems in comparison to the bulk substance considering the crystallization kinetics, molecular dynamics, and physical stability. Calorimetric investigations supported by the temperature-dependent X-ray diffraction measurements revealed that in the bulk system the recrystallization of polymorph III, which next is converted to the mixture of forms IV and I, is visible, while in the case of confined samples polymorphic forms I and III of APZ are produced upon heating of the molten API with different rates. Importantly, the two-step crystallization observed in thermograms obtained for the API infiltrated into native silica templates may suggest crystal formation by the interfacial and core molecules. Furthermore, dielectric studies enabled us to conclude that there is no trace of crystallization of spatially restricted API during one month of storage at T = 298 K. Finally, we found that in contrast to the crystalline and amorphous bulk samples, all examined confined systems show a logarithmic increase in API dissolution over time (very close to a prolonged release effect) without any sign of precipitation. Our data demonstrated that mesoporous matrices appear to be interesting candidates as carriers for unstable amorphous APIs, like APZ. In addition to protecting them against crystallization, they can provide the desired prolonged release effect, which may increase the drug concentration in the blood (resulting in higher bioavailability). We believe that the "nanostructirization" in terms of the application of porous membranes as a novel generation of drug carriers might open unique perspectives in the further development of drugs characterized by prolonged release.


Asunto(s)
Portadores de Fármacos , Dióxido de Silicio , Aripiprazol , Solubilidad , Cristalización , Portadores de Fármacos/química , Dióxido de Silicio/química , Preparaciones Farmacéuticas
5.
J Phys Chem B ; 127(27): 6191-6196, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37395588

RESUMEN

Phenyl alcohols (PhAs) are an interesting class of materials, for which the dielectric response reveals only the presence of single prominent Debye-like (D) relaxation, interpreted as a genuine structural (α) process. Herein, we have performed dielectric and mechanical measurements on a series of PhAs characterized by the varying length of the alkyl chain and found that this interpretation is not valid. Analysis of the derivative of the real part of the complex permittivity together with the mechanical and light scattering data clearly indicated that the prominent dielectric D-like peak is actually a superposition of both cross-correlation between dipole-dipole (D-mode) and self-dipole correlation (α-process) and that the distinguished α-mode exhibits a similar ("generic") shape of PhAs independently to their molecular weight and applied experimental technique. Therefore, the data presented herein contribute to the whole discussion focused on the dielectric response function and universality (or diversity) of the spectral shape of the α-mode of polar liquids.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122794, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37167743

RESUMEN

In this paper, several experimental techniques, i.e., differential scanning calorimetry, X-ray diffraction, Fourier transform infrared, Raman, and broadband dielectric spectroscopy were applied to study the nature of the phase transitions in 1-adamantylamine (1-NH2-ADM, C10H17N) and 1-adamantanol (1-OH-ADM, C10H16O). Calorimetric measurements showed one and three endothermic peaks in thermograms for the latter and the former substance, respectively. Indeed, results of spectroscopic investigations indicated that the observed thermal events in 1-NH2-ADM correspond to transitions between various plastic crystal (PC) phases (I, II, III, IV), while the endothermic process in 1-OH-ADM can be assigned to a phase transition between the PC and the ordinary crystal (OC). Especially interesting were the outcomes of dielectric studies carried out both at ambient and high-pressure conditions, during heating and cooling cycles. They showed: i) noticeable changes in the frequency dependencies of the imaginary (ε'') and real (ε') parts of the complex dielectric permittivity that occurred around temperatures of the characteristic endothermic events detected by the calorimetry, and ii) significant fluctuations of ε'' and ε' at pressures attributed to the respective phase transitions. Moreover, the pressure coefficients of the phase transition temperatures were estimated to be approximately equal to 0.2 K/MPa for both compounds. In turn, volume variation (ΔV) at the PC (II)-PC (III) and PC (III)-PC (IV) transition temperatures for 1-NH2-ADM was essentially different than ΔV for the PC-OC transition in 1-OH-ADM.

7.
Phys Chem Chem Phys ; 25(20): 14590-14597, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37191250

RESUMEN

In this paper, we have examined a series of phenyl-substituted primary monohydroxy alcohols (phenyl alcohols, PhAs), from ethanol to hexanol by means of dielectric and Fourier transform infrared (FTIR) spectroscopies supported by the mechanical investigations. The combination of both dielectric and mechanical data allows calculation of the energy barrier, Ea, for dissociation by the Rubinstein approach developed to describe the dynamical properties of self-assembling macromolecules. It was observed that the determined activation energy remains constant, |Ea,RM| ∼ 12.9-14.2 kJ mol-1, regardless of the molecular weight of the examined material. Surprisingly, the obtained values agree very well with Ea of the dissociation process determined from the FTIR data analysed within the van't Hoff relationship, where Ea,vH ∼ 9.13-13.64 kJ mol-1. Thus, the observed agreement between Ea determined by both applied approaches clearly implies that in the case of the examined series of PhAs, the dielectric Debye-like process is governed by the association-dissociation phenomenon as proposed by the transient chain model.

8.
Langmuir ; 39(1): 533-544, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36575053

RESUMEN

In the present study, the behavior of the calcium channel blocker cilnidipine (CLN) infiltrated into silica (SiO2) and anodic aluminum oxide (AAO) porous membranes characterized by a similar pore size (d = 8 nm and d = 10 nm, respectively) as well as the bulk sample has been investigated using differential scanning calorimetry, broadband dielectric spectroscopy (BDS), and Fourier-transform infrared spectroscopy (FTIR) techniques. The obtained data suggested the existence of two sets of CLN molecules in both confined systems (core and interfacial). They also revealed the lack of substantial differences in inter- and intramolecular dynamics of nanospatially restricted samples independently of the applied porous membranes. Moreover, the annealing experiments (isothermal time-dependent measurements) performed on the confined CLN clearly indicated that the whole equilibration process under confinement is governed by structural relaxation. It was also found that the ßanneal parameters obtained from BDS and FTIR data upon equilibration of both confined samples are comparable (within 10%) to each other, while the equilibration constants are significantly different. This finding strongly emphasizes that there is a close connection between the inter- and intramolecular dynamics under nanospatial restriction.


Asunto(s)
Dihidropiridinas , Dióxido de Silicio , Dióxido de Silicio/química , Óxido de Aluminio/química , Espectroscopía Infrarroja por Transformada de Fourier
9.
J Phys Chem Lett ; 13(44): 10464-10470, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36326602

RESUMEN

Herein, the annealing of highly polar (S)-(-)-4-methoxymethyl-1,3-dioxolan-2-one (S-methoxy-PC) within alumina and silica porous membranes characterized by different pore diameters was studied by means of dielectric spectroscopy. We found a significant slowing down of the structural dynamics of confined S-methoxy-PC with annealing time below and, surprisingly, also above the glass transition temperatures of the interfacial layer, Tg,interfacial. Furthermore, unexpectedly, a change in the slope of temperature dependencies of the characteristic time scale of this process τanneal, at Tg,interfacial for all confined samples, was reported. By modeling τanneal(T), we noted that the observed enormous variation of τanneal results from a decrease of the pore radius due to the vitrification of the interfacial molecules. This indicates that the enhanced dynamics of confined materials upon cooling is mainly controlled by the interfacial molecules.

10.
Chem Commun (Camb) ; 58(93): 13015-13018, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36341972

RESUMEN

In this paper, efficient MMA photo O-ATRP protocols conducted inside nanoreactors varying in nanostructured interfaces are reported for the first time. We showed that the microstructure of recovered polymers could be easily tuned just by implementing a given type of nanochannel (d = 10, 19-28, 35, 160 nm).

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121726, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35970088

RESUMEN

The nature of H-bonding interactions is still far from being understood despite intense experimental and theoretical studies on this subject carried out by the leading research centers. In this paper, by a combination of unique high-pressure infrared, dielectric and volumetric data, the intramolecular dynamics of hydroxyl moieties (which provides direct information about H-bonds) was studied along various isolines, i.e., isotherms, isobars, isochrones, and isochores, in a simple monohydroxy alcohol (2-ethyl-1-hexanol). This allowed us to discover that the temperature controls the intermolecular hydrogen bonds, which then affect the intramolecular dynamics of OH units. Although the role of density fluctuations gets stronger as temperature rises. We also demonstrated a clear connection between the intra- and intermolecular dynamics of the associating liquid at high pressure. The data reported herein open a new perspective to explore this important aspect of the glass transition phenomenon and understand H-bonding interactions at varying thermodynamic conditions.


Asunto(s)
Hexanoles , Enlace de Hidrógeno , Alcaloides de Pirrolicidina , Temperatura
12.
Sci Rep ; 12(1): 14324, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35996006

RESUMEN

In this paper, thermal properties, atomic-scale structure, and molecular dynamics (at ambient and high pressure) of native melatonin (MLT) and its partially-deuterated derivative (MLT-d2) have been investigated. Based on infrared spectroscopy, it was shown that treating MLT with D2O causes the replacement of hydrogen atoms attached to the nitrogen by deuterium. The degree of such substitution was very high (> 99%) and the deuterated sample remained stable after exposure to the air as well as during the melting and vitrification processes. Further calorimetric studies revealed the appearance of a peculiar thermal event before the melting of crystalline MLT-d2, which was assigned by the X-ray diffraction to a local negative thermal expansion of the unit cell. Finally, the high-pressure dielectric experiments indicated a few interesting findings, including the variation in the shape of the structural relaxation peak during compression, the difference in the pressure evolution of the glass transition temperature, and the temperature dependence of activation volume for both MLT species. The variations in these parameters manifest a different impact of the compression/densification on the dynamics of hydrogen and deuterium bonds in the native and partially-deuterated MLT, respectively.


Asunto(s)
Melatonina , Deuterio , Temperatura , Temperatura de Transición , Difracción de Rayos X
13.
Int J Pharm ; 624: 122025, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35850185

RESUMEN

Modified oligosaccharides with cyclic topology seem to be promising excipients for the preparation of Amorphous Solid Dispersions (ASDs), especially with those Active Pharmaceutical Ingredients (APIs), which have a strong crystallization tendency from the amorphous/glassy state. Herein, the usefulness of two acetylated cyclodextrins (ac-α-CD and ac-ß-CD) with various molecular weights (Mw) as stabilizers for the supercooled metronidazole (Met) has been discussed. X-ray diffraction (XRD) studies carried out on Met-acCDs mixtures (prepared in molar ratios from 1:2 to 5:1) showed that the system with ac-α-CD containing the highest amount of API (5:1 m/m) crystallizes immediately after preparation, whereas all Met-ac-ß-CD ASDs remain stable. What is more, long-term XRD measurements confirmed that the Met-ac-α-CD 2:1 m/m system crystallizes after 100 days of storage in contrast to the same system containing ac-ß-CD. The non-isothermal calorimetric data revealed that the activation barrier for crystallization (Ecr) in ASDs with the oligosaccharide having a greater Mw (i.e., composed of seven acGLU molecules) is slightly higher. Finally, to explain the differences in behavior between the mixtures with both acCDs, infrared studies, DFT calculations and Molecular Dynamics simulations were performed. All methods excluded the scenario of API incorporation inside the acCDs' core. On the other hand, obtained results suggested that in comparison to ac-α-CD, the greater amount of Met molecules might be bounded on the outside surface of ac-ß-CD. Therefore, this modified saccharide is a better stabilizer of the examined API.


Asunto(s)
Ciclodextrinas , Metronidazol , Rastreo Diferencial de Calorimetría , Cristalización/métodos , Estabilidad de Medicamentos , Excipientes/química , Solubilidad , Difracción de Rayos X
14.
Soft Matter ; 18(26): 4930-4936, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35730478

RESUMEN

We study the molecular origin of a prepeak (PP) observed at low q values in the structure factors of three oligomers in a bulk (poly(mercaptopropyl)methylsiloxane, PMMS, poly(methylmercaptopropyl)-grafted-hexylmethacrylate, PMMS-g-HMA, and poly(methylphenyl)siloxane, PMPS) in order to understand the lowering of the PP intensity detected for oligomers confined in cylindrical pores with low diameter. For this purpose, we use a combination of X-ray diffraction measurements and coarse-grained bead-spring molecular dynamics simulations. Our molecular modelling demonstrated that the planarity of the pendant groups triggers the self-association of oligomers into nanoaggregates. However, the formation of oligomeric nanodomains is not sufficient for building-up the PP. The latter requires spatial disturbance in the arrangement of the side groups of oligomers within clusters. Importantly, our numerical analysis revealed that the increasing degree of the confinement of oligomers limits their aggregation and consequently lowers the amplitude of the PP observed in the experimental data.

15.
J Chem Phys ; 154(6): 064701, 2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33588559

RESUMEN

Herein, we examined the effect of finite size and wettability on the structural dynamics and the molecular arrangement of the propylene carbonate derivative, (S)-(-)-4-methoxymethyl-1,3-dioxolan-2-one (assigned as s-methoxy-PC), incorporated into alumina and silica porous templates of pore diameters d = 4 nm-10 nm using Raman and broadband dielectric spectroscopy, differential scanning calorimetry, and x-ray diffraction. It was demonstrated that only subtle changes in the molecular organization and short-range order of confined s-methoxy-PC molecules were detected. Yet, a significant deviation of the structural dynamics and depression of the glass transition temperatures, Tg, was found for all confined samples with respect to the bulk material. Interestingly, these changes correlate with neither the finite size effects nor the interfacial energy but seem to vary with wettability, generally. Nevertheless, for s-methoxy-PC infiltrated into native (more hydrophilic) and modified (more hydrophobic) silica templates of the same nanochannel size (d = 4 nm), a change in the dynamics and Tg was negligible despite a significant variation in wettability. These results indicated that although wettability might be a suitable variable to predict alteration of the structural dynamics and depression of the glass transition temperature, other factors, i.e., surface roughness and the density packing, might also have a strong contribution to the observed confinement effects.

16.
RSC Adv ; 11(55): 34806-34819, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-35494728

RESUMEN

In this study, we report the acid-catalyzed and high pressure assisted ring-opening polymerization (ROP) of γ-butyrolactone (GBL). The use of a dually-catalyzed approach combining an external physical factor and internal catalyst (trifluoromethanesulfonic acid (TfOH) or p-toluenesulfonic acid (PTSA)) enforced ROP of GBL, which is considered as hardly polymerizable monomer still remaining a challenge for the modern polymer chemistry. The experiments performed at various thermodynamic conditions (T = 278-323 K and p = 700-1500 MPa) clearly showed that the high pressure supported polymerization process led to obtaining well-defined macromolecules of better parameters (M n = 2200-9700 g mol-1; D = 1.05-1.46) than those previously reported. Furthermore, the parabolic-like dependence of both the molecular weight (M W) and the yield of obtained polymers on variation in temperature and pressure at either isobaric or isothermal conditions was also noticed, allowing the determination of optimal conditions for the polymerization process. However, most importantly, this strategy allowed to significantly reduce the reaction time (just 3 h at room temperature) and increase the yield of obtained polymers (up to 0.62 gPGBL/gGBL). Moreover, despite using a strongly acidic catalyst, synthesized polymers remained non-toxic and biocompatible, as proven by the cytotoxicity test we performed in further analysis. Additional investigation (including MALDI-TOF measurements) showed that the catalyst selection affected not only M W and yield but also the linear/cyclic form content in obtained macromolecules. These findings show the way to tune the properties of PGBL and obtain polymer suitable for application in the biomedical industry.

17.
Mol Pharm ; 18(1): 347-358, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33355470

RESUMEN

The impact of the chain length or dispersity of polymers in controlling the crystallization of amorphous active pharmaceutical ingredients (APIs) has been discussed for a long time. However, because of the weak control of these parameters in the majority of macromolecules used in pharmaceutical formulations, the abovementioned topic is poorly understood. Herein, four acetylated oligosaccharides, maltose (acMAL), raffinose (acRAF), stachyose (acSTA), and α-cyclodextrin (ac-α-CD) of growing chain lengths and different topologies (linear vs cyclic), mimicking the growing backbone of the polymer, were selected to probe the influence of these structural factors on the crystallization of naproxen (NAP)-an API that does not vitrify regardless of the cooling rate applied in our experiment. It was found that in equimolar systems composed of NAP and linear acetylated oligosaccharides, the progress and activation barrier for crystallization are dependent on the molecular weight of the excipient despite the fact that results of Fourier transform infrared studies indicated that there is no difference in the interaction pattern between measured samples. On the other hand, complementary dielectric, calorimetric, and X-ray diffraction data clearly demonstrated that NAP mixed with ac-α-CD (cyclic saccharide) does not tend to crystallize even in the system with a much higher content of APIs. To explain this interesting finding, we have carried out further density functional theory computations, which revealed that incorporation of NAP into the cavity of ac-α-CD is hardly possible because this state is of much higher energy (up to 80 kJ/mol) with respect to the one where the API is located outside of the saccharide torus. Hence, although at the moment, it is very difficult to explain the much stronger impact of the cyclic saccharide on the suppression of crystallization and enhanced stability of NAP with respect to the linear carbohydrates, our studies clearly showed that the chain length and the topology of the excipient play a significant role in controlling the crystallization of this API.


Asunto(s)
Naproxeno/química , Oligosacáridos/química , Rastreo Diferencial de Calorimetría/métodos , Carbohidratos/química , Cristalización/métodos , Composición de Medicamentos/métodos , Excipientes/química , Simulación de Dinámica Molecular , Peso Molecular , Transición de Fase/efectos de los fármacos , Solubilidad/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Difracción de Rayos X/métodos
18.
Phys Chem Chem Phys ; 22(48): 28202-28212, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33295350

RESUMEN

In this paper, we have analyzed structural, thermal, and dynamical properties of four azole antifungals: itraconazole (ITZ), posaconazole (POS), terconazole (TER) and ketoconazole (KET), differing mainly in the length of the rod-like backbone and slightly in side groups. Our investigations clearly demonstrated that the changes in the chemical structure result in a different ability to form the medium-range order (MRO) and variation in thermal and dynamical properties of these pharmaceuticals. Direct comparison of the diffractograms collected for glassy and crystalline materials indicated that the MRO observed in the former phases is related to maintaining the local molecular arrangement of the crystal structure. Moreover, it was shown that once the MRO-related diffraction peaks appear, additional mobility (δ- or α' relaxation), slower than the structural (α)-process, is also detected in dielectric spectra. This new mode is connected to the motions within supramolecular nanoaggregates. Detailed analysis of dielectric and calorimetric data also revealed that the variation in the internal structure and MRO of the examined pharmaceuticals have an impact on the glass transition temperature (Tg) shape of the α-process, isobaric fragility, molecular dynamics in the glassy state and number of dynamically correlated molecules. These findings could be helpful in an understanding the influence of different types of intermolecular MRO on the properties of substances having a similar chemical backbone.


Asunto(s)
Antifúngicos/química , Azoles/química , Rastreo Diferencial de Calorimetría , Estructura Molecular , Temperatura de Transición
19.
Macromolecules ; 53(22): 10225-10233, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33250524

RESUMEN

We examined the behavior of poly(mercaptopropyl)methylsiloxane (PMMS), characterized by a polymer chain backbone of alternate silicon and oxygen atoms substituted by a polar pendant group able to form hydrogen bonds (-SH moiety), by means of infrared (FTIR) and dielectric (BDS) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and rheology. We observed that the examined PMMS forms relatively efficient hydrogen bonds leading to the association of chains in the form of ordered lamellar-like hydrogen-bonded nanodomains. Moreover, the recorded mechanical and dielectric spectra revealed the presence of two relaxation processes. A direct comparison of collected data and relaxation times extracted from two experimental techniques, BDS and rheology, indicates that they monitor different types of the mobility of PMMS macromolecules. Our mechanical measurements revealed the presence of Rouse modes connected to the chain dynamics (slow process) and segmental relaxation (a faster process), whereas in the dielectric loss spectra we observed two relaxation processes related most likely to either the association-dissociation phenomenon within lamellar-like self-assemblies or the sub-Rouse mode (α'-slower process) and segmental (α-faster process) dynamics. Data presented herein allow a better understanding of the peculiar dynamical properties of polysiloxanes and associating polymers having strongly polar pendant moieties.

20.
Macromolecules ; 53(15): 6341-6352, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32905278

RESUMEN

We investigated the influence of anion type (salicylate, [(MOB)MIm][Sal], vs chloride, [(MOB)MIm][Cl]) of imidazolium-based ionic liquid (IL) and its content on the curing kinetics of bisphenol A diglicydyl ether (DGEBA of molecular weight M n = 340 g/mol). Further physicochemical properties (i.e., glass transition temperature, T g, and conductivity, σdc) of produced polymers were investigated. The polymerization of the studied systems was examined at various molar ratios (1:1, 10:1, and 20:1) at different reaction temperatures (T reaction = 353-383 K) by using differential scanning calorimetry (DSC). Interestingly, both DGEBA/IL compositions studied herein revealed significantly different reaction kinetics and yielded materials of completely distinct physical properties. Surprisingly, in contrast to [(MOB)MIm][Cl], for the low concentration of [(MOB)MIm][Sal] in the reaction mixture, an additional step in the kinetic curves, likely due to the combined enhanced initiation activity of anion (salicylate)-cation (imidazolium-based), was noted. To thoroughly analyze the kinetics of all studied systems, including the two-step kinetics of DGEBA/[(MOB)MIm][Sal], we applied a new approach that relies on the combination of the two phenomenological Avrami equations. Analysis of the determined constant rates revealed that the reaction occurring in the presence of the salicylate anion is characterized by higher activation energy with respect to those with the chloride. Moreover, DGEBA/[(MOB)MIm][Sal] cured materials have higher T g in comparison to DGEBA polymerized with [(MOB)MIm][Cl] independent of the IL concentration. This fact might indicate that, most likely, the products of hardening are highly cross-linked (high T g) or oligomeric linear polymers (low T g) in the former and latter cases, respectively. Such a change in the chemical structure of the polymer is also reflected in the dc conductivity measured at the glass transition temperature, which is much higher for DGEBA cured with [(MOB)MIm][Cl]. Herein, we have clearly demonstrated that the type of anion has a crucial impact on the polymerization mechanism, kinetics, and properties of produced materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...