Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474652

RESUMEN

Stable palladium (II) complexes, incorporating a double (N-benzoylthiourea) arrangement bonded to a complex heterocyclic scaffold, are used as precursors of catalytic species able to promote Suzuki-Miyaura, Mizoroki-Heck, Hiyama, Buchwald-Hartwig, Hirao and Sonogashira-Hagihara cross-coupling transformations in water. These sustainable processes are chemoselective and very versatile. The nanoparticles responsible for these catalytic reactions were analyzed and studied. Their usefulness is demonstrated after several tests and analyses. The heterogeneous character of this species in water was also confirmed.

2.
J Biomol Struct Dyn ; 42(7): 3441-3458, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37232497

RESUMEN

The synthesis and biological assessment of novel multi-functionalized pyrrolidine-containing benzenesulfonamides were reported along with their antimicrobial, antifungal, CAs inhibition, and AChE inhibition as well as DNA-binding effects. The chemical structure of the compounds was elucidated by using FTIR, NMR, and HRMS. Compound 3b, which had Ki values of 17.61 ± 3.58 nM (hCA I) and 5.14 ± 0.61 nM (hCA II), was found the be the most potent CAs inhibitor. Compounds 6a and 6b showed remarkable AChE inhibition effects with Ki values 22.34 ± 4.53 nM and 27.21 ± 3.96 nM in comparison to tacrine. Compounds 6a-6c had moderate antituberculosis effect on M. tuberculosis with a MIC value of 15.62 µg/ml. Compounds had weaker antifungal and antibacterial activity in the range of MIC 500-62.5 µg/ml against standard bacterial and fungal strains. Besides these above, molecular docking studies were performed to examine and evaluate the interaction of the remarkable compounds (3b, 6a and 6b) against the current enzymes (CAs and AChE). Novel compounds gained interest in terms of enzyme inhibitory potencies. Therefore, the most potent enzyme inhibitors may be considered lead compounds to be modified for further research.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antiinfecciosos , Anhidrasas Carbónicas , Inhibidores de la Colinesterasa/química , Bencenosulfonamidas , Acetilcolinesterasa/química , Antifúngicos/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Simulación del Acoplamiento Molecular , Anhidrasa Carbónica I/metabolismo , Anhidrasa Carbónica II/metabolismo , Antiinfecciosos/farmacología , Relación Estructura-Actividad , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...