Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
MAGMA ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960988

RESUMEN

OBJECTIVE: To highlight progress and opportunities of measuring kidney size with MRI, and to inspire research into resolving the remaining methodological gaps and unanswered questions relating to kidney size assessment. MATERIALS AND METHODS: This work is not a comprehensive review of the literature but highlights valuable recent developments of MRI of kidney size. RESULTS: The links between renal (patho)physiology and kidney size are outlined. Common methodological approaches for MRI of kidney size are reviewed. Techniques tailored for renal segmentation and quantification of kidney size are discussed. Frontier applications of kidney size monitoring in preclinical models and human studies are reviewed. Future directions of MRI of kidney size are explored. CONCLUSION: MRI of kidney size matters. It will facilitate a growing range of (pre)clinical applications, and provide a springboard for new insights into renal (patho)physiology. As kidney size can be easily obtained from already established renal MRI protocols without the need for additional scans, this measurement should always accompany diagnostic MRI exams. Reconciling global kidney size changes with alterations in the size of specific renal layers is an important topic for further research. Acute kidney size measurements alone cannot distinguish between changes induced by alterations in the blood or the tubular volume fractions-this distinction requires further research into cartography of the renal blood and the tubular volumes.

2.
Magn Reson Med ; 91(6): 2532-2545, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38321592

RESUMEN

PURPOSE: The increasing incidence of kidney diseases is a global concern, and current biomarkers and treatments are inadequate. Changes in renal tubule luminal volume fraction (TVF) serve as a rapid biomarker for kidney disease and improve understanding of renal (patho)physiology. This study uses the amplitude of the long T2 component as a surrogate for TVF in rats, by applying multiexponential analysis of the T2-driven signal decay to examine micromorphological changes in renal tissue. METHODS: Simulations were conducted to identify a low mean absolute error (MAE) protocol and an accelerated protocol customized for the in vivo study of T2 mapping of the rat kidney at 9.4 T. We then validated our bi-exponential approach in a phantom mimicking the relaxation properties of renal tissue. This was followed by a proof-of-principle demonstration using in vivo data obtained during a transient increase of renal pelvis and tubular pressure. RESULTS: Using the low MAE protocol, our approach achieved an accuracy of MAE < 1% on the mechanical phantom. The T2 mapping protocol customized for in vivo study achieved an accuracy of MAE < 3%. Transiently increasing pressure in the renal pelvis and tubules led to significant changes in TVF in renal compartments: ΔTVFcortex = 4.9%, ΔTVFouter_medulla = 4.5%, and ΔTVFinner_medulla = -14.6%. CONCLUSION: These results demonstrate that our approach is promising for research into quantitative assessment of renal TVF in in vivo applications. Ultimately, these investigations have the potential to help reveal mechanism in acute renal injury that may lead to chronic kidney disease, which will support research into renal disorders.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Ratas , Animales , Imagen por Resonancia Magnética/métodos , Riñón/diagnóstico por imagen , Túbulos Renales/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...