Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8740, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627499

RESUMEN

Visual clinical diagnosis of dermatoses in people of color (PoC) is a considerable challenge in daily clinical practice and a potential cause of misdiagnosis in this patient cohort. The study aimed to determine the difference in visual diagnostic skills of dermatologists practicing in Germany in patients with light skin (Ls) and patients with skin of color (SoC) to identify a potential need for further education. From April to June 2023, German dermatologists were invited to complete an online survey with 24 patient photographs depicting 12 skin diseases on both Ls and SoC. The study's primary outcomes were the number of correctly rated photographs and the participants' self-assessed certainty about the suspected visual diagnosis in Ls compared to SoC. The final analysis included surveys from a total of 129 dermatologists (47.8% female, mean age: 39.5 years). Participants were significantly more likely to correctly identify skin diseases by visual diagnostics in patients with Ls than in patients with SoC (72.1% vs. 52.8%, p ≤ 0.001, OR 2.28). Additionally, they expressed higher confidence in their diagnoses for Ls than for SoC (73.9 vs. 61.7, p ≤ 0.001). Therefore, further specialized training seems necessary to improve clinical care of dermatologic patients with SoC.


Asunto(s)
Enfermedades de la Piel , Pigmentación de la Piel , Humanos , Femenino , Adulto , Masculino , Dermatólogos , Encuestas y Cuestionarios , Alemania , Enfermedades de la Piel/diagnóstico
2.
Nat Cancer ; 5(3): 433-447, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286827

RESUMEN

Liver metastasis (LM) confers poor survival and therapy resistance across cancer types, but the mechanisms of liver-metastatic organotropism remain unknown. Here, through in vivo CRISPR-Cas9 screens, we found that Pip4k2c loss conferred LM but had no impact on lung metastasis or primary tumor growth. Pip4k2c-deficient cells were hypersensitized to insulin-mediated PI3K/AKT signaling and exploited the insulin-rich liver milieu for organ-specific metastasis. We observed concordant changes in PIP4K2C expression and distinct metabolic changes in 3,511 patient melanomas, including primary tumors, LMs and lung metastases. We found that systemic PI3K inhibition exacerbated LM burden in mice injected with Pip4k2c-deficient cancer cells through host-mediated increase in hepatic insulin levels; however, this circuit could be broken by concurrent administration of an SGLT2 inhibitor or feeding of a ketogenic diet. Thus, this work demonstrates a rare example of metastatic organotropism through co-optation of physiological metabolic cues and proposes therapeutic avenues to counteract these mechanisms.


Asunto(s)
Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas , Transducción de Señal , Insulina , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
4.
Nat Cell Biol ; 25(12): 1746-1757, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38012403

RESUMEN

The bone marrow contains peripheral nerves that promote haematopoietic regeneration after irradiation or chemotherapy (myeloablation), but little is known about how this is regulated. Here we found that nerve growth factor (NGF) produced by leptin receptor-expressing (LepR+) stromal cells is required to maintain nerve fibres in adult bone marrow. In nerveless bone marrow, steady-state haematopoiesis was normal but haematopoietic and vascular regeneration were impaired after myeloablation. LepR+ cells, and the adipocytes they gave rise to, increased NGF production after myeloablation, promoting nerve sprouting in the bone marrow and haematopoietic and vascular regeneration. Nerves promoted regeneration by activating ß2 and ß3 adrenergic receptor signalling in LepR+ cells, and potentially in adipocytes, increasing their production of multiple haematopoietic and vascular regeneration growth factors. Peripheral nerves and LepR+ cells thus promote bone marrow regeneration through a reciprocal relationship in which LepR+ cells sustain nerves by synthesizing NGF and nerves increase regeneration by promoting the production of growth factors by LepR+ cells.


Asunto(s)
Médula Ósea , Receptores de Leptina , Médula Ósea/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Células de la Médula Ósea/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Células Madre Hematopoyéticas/metabolismo , Regeneración Nerviosa
5.
bioRxiv ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37732192

RESUMEN

Mitochondrial DNA (mtDNA) mutations are frequently observed in cancer, but their contribution to tumor progression is controversial. To evaluate the impact of mtDNA variants on tumor growth and metastasis, we created human melanoma cytoplasmic hybrid (cybrid) cell lines transplanted with wildtype mtDNA or pathogenic mtDNA encoding variants that partially or completely inhibit oxidative phosphorylation. Homoplasmic pathogenic mtDNA cybrids reliably established tumors despite dysfunctional oxidative phosphorylation. However, pathogenic mtDNA variants disrupted spontaneous metastasis of subcutaneous tumors and decreased the abundance of circulating melanoma cells in the blood. Pathogenic mtDNA did not induce anoikis or inhibit organ colonization of melanoma cells following intravenous injections. Instead, migration and invasion were reduced, indicating that limited circulation entry functions as a metastatic bottleneck amidst mtDNA dysfunction. Furthermore, analysis of selective pressure exerted on the mitochondrial genomes of heteroplasmic cybrid lines revealed a suppression of pathogenic mtDNA allelic frequency during melanoma growth. Collectively, these findings demonstrate that functional mtDNA is favored during melanoma growth and enables metastatic entry into the blood.

6.
EBioMedicine ; 96: 104774, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660535

RESUMEN

BACKGROUND: PD-1-based immune checkpoint inhibition (ICI) is the major backbone of current melanoma therapy. Tumor PD-L1 expression represents one of few biomarkers predicting ICI therapy outcome. The objective of the present study was to systematically investigate whether the type of tumor tissue examined for PD-L1 expression has an impact on the correlation with ICI therapy outcome. METHODS: Pre-treatment tumor tissue was collected within the prospective DeCOG cohort study ADOREG/TRIM (CA209-578; NCT05750511) between February 2014 and May 2020 from 448 consecutive patients who received PD-1-based ICI for non-resectable metastatic melanoma. The primary study endpoint was best overall response (BOR), secondary endpoints were progression-free (PFS) and overall survival (OS). All endpoints were correlated with tumor PD-L1 expression (quantified with clone 28-8; cutoff ≥5%) and stratified by tissue type. FINDINGS: Tumor PD-L1 was determined in 95 primary tumors (PT; 36.8% positivity), 153 skin/subcutaneous (34.0% positivity), 115 lymph node (LN; 50.4% positivity), and 85 organ (40.8% positivity) metastases. Tumor PD-L1 correlated with BOR if determined in LN (OR = 0.319; 95% CI = 0.138-0.762; P = 0.010), but not in skin/subcutaneous metastases (OR = 0.656; 95% CI = 0.311-1.341; P = 0.26). PD-L1 positivity determined on LN metastases was associated with favorable survival (PFS, HR = 0.490; 95% CI = 0.310-0.775; P = 0.002; OS, HR = 0.519; 95% CI = 0.307-0.880; P = 0.014). PD-L1 positivity determined in PT (PFS, HR = 0.757; 95% CI = 0.467-1.226; P = 0.27; OS; HR = 0.528; 95% CI = 0.305-0.913; P = 0.032) was correlated with survival to a lesser extent. No relevant survival differences were detected by PD-L1 determined in skin/subcutaneous metastases (PFS, HR = 0.825; 95% CI = 0.555-1.226; P = 0.35; OS, HR = 1.083; 95% CI = 0.698-1.681; P = 0.72). INTERPRETATION: For PD-1-based immunotherapy in melanoma, tumor PD-L1 determined in LN metastases was stronger correlated with therapy outcome than that assessed in PT or organ metastases. PD-L1 determined in skin/subcutaneous metastases showed no outcome correlation and therefore should be used with caution for clinical decision making. FUNDING: Bristol-Myers Squibb (ADOREG/TRIM, NCT05750511); German Research Foundation (DFG; Clinician Scientist Program UMEA); Else Kröner-Fresenius-Stiftung (EKFS; Medical Scientist Academy UMESciA).


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Neoplasias Cutáneas , Humanos , Antígeno B7-H1/metabolismo , Estudios de Cohortes , Inmunoterapia , Melanoma/inmunología , Melanoma/terapia , Pronóstico , Receptor de Muerte Celular Programada 1 , Estudios Prospectivos , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/terapia , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
7.
Z Gerontol Geriatr ; 56(6): 505-515, 2023 Oct.
Artículo en Alemán | MEDLINE | ID: mdl-37642727

RESUMEN

Skin changes in the surrounding areas of wounds are a frequently occurring multidisciplinary challenge in the care of patients with wounds, especially in older people. These are often inflammatory skin diseases like eczema that can be caused by various factors. These include allergens, noxa, incorrect skin care or prolonged contact with moisture. In the diagnostics, detailed medical history, clinical examination and allergological tests play important roles. Eczema can mostly be treated symptomatically with topical glucocorticoids. Calcineurin inhibitors are an alternative treatment, especially for longer term topical applications. In cases of impetiginized lesions, appropriate antimicrobial therapy should also be carried out. For long-term and preventive treatment the adequate use of skin care and skin protection products that help to strengthen or restore the skin barrier is decisive as well as the education of the patients and, if necessary, their relatives.


Asunto(s)
Eccema , Humanos , Anciano , Eccema/terapia , Eccema/tratamiento farmacológico , Inhibidores de la Calcineurina/uso terapéutico
8.
Eur J Cancer ; 183: 1-10, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36773463

RESUMEN

BACKGROUND: Activating hot spot R29S mutations in RAC1, a small GTPase influencing several cellular processes including cell proliferation and cytoskeleton rearrangement, have been reported in up to 9% of sun-exposed melanomas. Clinical characteristics and treatment implications of RAC1 mutations in melanoma remain unclear. METHODS: We investigated the largest set (n = 64) of RAC1 mutated melanoma patients reported to date, including a retrospective single institution cohort (n = 34) from the University Hospital Essen and a prospective multicentre cohort (n = 30) from the translational study Tissue Registry in Melanoma (TRIM; CA209-578), for patient and tumour characteristics as well as therapy outcomes. RESULTS: From 3037 sequenced melanoma samples screened RAC1 mutations occurred in ∼2% of samples (64/3037). The most common RAC1 mutation was P29S (95%, 61/64). The majority of tumours had co-occuring MAP kinase mutations (88%, 56/64); mostly activating NRAS (47%, 30/64) mutations, followed by activating BRAF (28%, 18/64) and NF1 (25%, 16/64) mutations. RAC1 mutated melanomas were almost exclusively of cutaneous origin (84%, 54/64) or of unknown primary (MUP, 14%, 9/64). C > T alterations were the most frequent mutation type identified demonstrating a UV-signature for RAC1 mutated melanoma. Most patients with unresectable disease (39) received immune checkpoint inhibitors (ICI) (77%, 30/39). Objective response rate of first-line treatment in patients with stage III/IV disease was 21%; median overall survival was 47.8 months. CONCLUSIONS: RAC1 mutated melanomas are rare, mostly of cutaneous origin and frequently harbour concomitant MAP kinase mutations, particularly in NRAS. Patients with advanced disease benefit from systemic treatment with ICI.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Estudios Retrospectivos , Estudios Prospectivos , Proteínas Proto-Oncogénicas B-raf/genética , Melanoma/tratamiento farmacológico , Mutación , Neoplasias Cutáneas/patología , Proteína de Unión al GTP rac1/genética
9.
J Eur Acad Dermatol Venereol ; 37(5): 907-913, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36606548

RESUMEN

INTRODUCTION: Worldwide mass vaccination for COVID-19 started in late 2020. COVID-19 vaccines cause benign hypermetabolic lymphadenopathies. Clinical stratification between vaccine-associated benign lymphadenopathies and malignant lymphadenopathies through ultrasound, MRI or FDG PET-CT is not feasible. This leads to unnecessary lymph node biopsies, excisions and even radical lymph node dissections. Therefore, to avoid unnecessary surgeries, we assessed whether noninvasive multispectral optoacoustic tomography (MSOT) enables a better differentiation between benign and malignant lymphadenopathies. PATIENTS AND METHODS: All patients were vaccinated for COVID-19. We used MSOT to image deoxy- and oxyhaemoglobin levels in lymph nodes of tumour patients to assess metastatic status. MSOT imaging results were compared with standard ultrasound and pathological lymph node analysis. We also evaluated the influences of gender, age and time between vaccination and MSOT measurement of lymph nodes on the measured deoxy- and oxyhaemoglobin levels in patients with reactive lymph node changes. RESULTS: Multispectral optoacoustic tomography was able to identify cancer-free lymph nodes in vivo without a single false negative (33 total lymph nodes), with 100% sensitivity and 50% specificity. A statistically significant higher deoxyhaemoglobin content was detected in patients with tumour manifestations in the lymph node (p = 0.02). There was no statistically significant difference concerning oxyhaemoglobin (p = 0.65). Age, sex and time between vaccination and MSOT measurement had statistically non-significant impact on deoxy- and oxyhaemoglobin levels in patients with reactive lymph nodes. CONCLUSION: Here, we show that MSOT measurement is an advantageous clinical approach to differentiate between vaccine-associated benign lymphadenopathy and malignant lymph node metastases based on the deoxygenation level in lymph nodes.


Asunto(s)
COVID-19 , Coronavirus , Linfadenopatía , Humanos , Metástasis Linfática , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Vacunas contra la COVID-19 , Oxihemoglobinas , COVID-19/patología , Linfadenopatía/diagnóstico por imagen , Linfadenopatía/etiología , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Vacunación , Fluorodesoxiglucosa F18
10.
Curr Opin Chem Biol ; 73: 102253, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36689818

RESUMEN

Platelets are small anucleate cell fragments (2-4 µm in diameter) in the blood, which play an essential role in thrombosis and hemostasis. Genetic or acquired platelet dysfunctions are linked to bleeding, increased risk of thromboembolic events and cardiovascular diseases. Advanced proteomic approaches may pave the way to a better understanding of the roles of platelets in hemostasis, and pathophysiological processes such as inflammation, metastatic spread and thrombosis. Further insights into the molecular biology of platelets are crucial to aid drug development and identify diagnostic markers of platelet activation. Platelet activation is known to be an extremely rapid process and involves multiple post-translational mechanisms at sub second time scale, including proteolysis and phosphorylation. Multi-omics technologies and biochemical approaches can be exploited to precisely probe and define these posttranslational pathways. Notably, the absence of a nucleus in platelets significantly reduces the number of present proteins, simplifying mass spectrometry-based proteomics and metabolomics approaches.


Asunto(s)
Plaquetas , Trombosis , Humanos , Plaquetas/metabolismo , Plaquetas/patología , Proteómica , Multiómica , Activación Plaquetaria , Trombosis/metabolismo , Trombosis/patología
11.
Res Sq ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36711807

RESUMEN

For more than a century, fasting regimens have improved health, lifespan, and tissue regeneration in diverse organisms, including humans. However, how fasting and post-fast refeeding impact adult stem cells and tumour formation has yet to be explored in depth. Here, we demonstrate that post-fast refeeding increases intestinal stem cell (ISC) proliferation and tumour formation: Post-fast refeeding augments the regenerative capacity of Lgr5+ intestinal stem cells (ISCs), and loss of the tumour suppressor Apc in ISCs under post-fast refeeding leads to a higher tumour incidence in the small intestine and colon than in the fasted or ad libitum (AL) fed states. This demonstrates that post-fast refeeding is a distinct state. Mechanistically, we discovered that robust induction of mTORC1 in post-fast-refed ISCs increases protein synthesis via polyamine metabolism to drive these changes, as inhibition of mTORC1, polyamine metabolite production, or protein synthesis abrogates the regenerative or tumourigenic effects of post-fast refeeding. Thus, fast-refeeding cycles must be carefully considered when planning diet-based strategies for regeneration without increasing cancer risk, as post-fast refeeding leads to a burst not only in stem cell-driven regeneration but also in tumourigenicity.

12.
Pigment Cell Melanoma Res ; 36(2): 206-223, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36478190

RESUMEN

Metastatic melanoma is a complex and deadly disease. Due to its complexity, the development of novel therapeutic strategies to inhibit metastatic melanoma remains an outstanding challenge. Our ability to study metastasis is advanced with the development of in vitro and in vivo models that better mimic the different steps of the metastatic cascade beginning from primary tumor initiation to final metastatic seeding. In this review, we provide a comprehensive summary of in vitro models, in vivo models, and in silico platforms to study the individual steps of melanoma metastasis. Furthermore, we highlight the advantages and limitations of each model and discuss the challenges of how to improve current models to enhance translation for melanoma cancer patients and future therapies.


Asunto(s)
Melanoma , Humanos , Melanoma/patología , Microambiente Tumoral , Metástasis de la Neoplasia
13.
Sci Adv ; 8(35): eabn9550, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044570

RESUMEN

In mice and humans with cancer, intravenous 13C-glucose infusion results in 13C labeling of tumor tricarboxylic acid (TCA) cycle intermediates, indicating that pyruvate oxidation in the TCA cycle occurs in tumors. The TCA cycle is usually coupled to the electron transport chain (ETC) because NADH generated by the cycle is reoxidized to NAD+ by the ETC. However, 13C labeling does not directly report ETC activity, and other pathways can oxidize NADH, so the ETC's role in these labeling patterns is unverified. We examined the impact of the ETC complex I inhibitor IACS-010759 on tumor 13C labeling. IACS-010759 suppresses TCA cycle labeling from glucose or lactate and increases labeling from glutamine. Cancer cells expressing yeast NADH dehydrogenase-1, which recycles NADH to NAD+ independently of complex I, display normalized labeling when complex I is inhibited, indicating that cancer cell ETC activity regulates TCA cycle metabolism and 13C labeling from multiple nutrients.


Asunto(s)
Complejo I de Transporte de Electrón , Glucosa , Glutamina , Neoplasias , Animales , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Isótopos , Ratones , NAD/metabolismo , Neoplasias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Trends Cancer ; 8(12): 988-1001, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35909026

RESUMEN

Metastasis is responsible for 90% of deaths in patients with cancer. Understanding the role of metabolism during metastasis has been limited by the development of robust and sensitive technologies that capture metabolic processes in metastasizing cancer cells. We discuss the current technologies available to study (i) metabolism in primary and metastatic cancer cells and (ii) metabolic interactions between cancer cells and the tumor microenvironment (TME) at different stages of the metastatic cascade. We identify advantages and disadvantages of each method and discuss how these tools and technologies will further improve our understanding of metastasis. Studies investigating the complex metabolic rewiring of different cells using state-of-the-art metabolomic technologies have the potential to reveal novel biological processes and therapeutic interventions for human cancers.


Asunto(s)
Metabolómica , Neoplasias , Humanos , Metabolómica/métodos , Microambiente Tumoral , Neoplasias/patología
15.
Nat Commun ; 13(1): 2698, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577785

RESUMEN

Purine nucleotides are necessary for various biological processes related to cell proliferation. Despite their importance in DNA and RNA synthesis, cellular signaling, and energy-dependent reactions, the impact of changes in cellular purine levels on cell physiology remains poorly understood. Here, we find that purine depletion stimulates cell migration, despite effective reduction in cell proliferation. Blocking purine synthesis triggers a shunt of glycolytic carbon into the serine synthesis pathway, which is required for the induction of cell migration upon purine depletion. The stimulation of cell migration upon a reduction in intracellular purines required one-carbon metabolism downstream of de novo serine synthesis. Decreased purine abundance and the subsequent increase in serine synthesis triggers an epithelial-mesenchymal transition (EMT) and, in cancer models, promotes metastatic colonization. Thus, reducing the available pool of intracellular purines re-routes metabolic flux from glycolysis into de novo serine synthesis, a metabolic change that stimulates a program of cell migration.


Asunto(s)
Nucleótidos de Purina , Serina , Carbono , Movimiento Celular , Purinas , Serina/metabolismo
16.
Nature ; 604(7905): 349-353, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388219

RESUMEN

Mammalian embryogenesis requires rapid growth and proper metabolic regulation1. Midgestation features increasing oxygen and nutrient availability concomitant with fetal organ development2,3. Understanding how metabolism supports development requires approaches to observe metabolism directly in model organisms in utero. Here we used isotope tracing and metabolomics to identify evolving metabolic programmes in the placenta and embryo during midgestation in mice. These tissues differ metabolically throughout midgestation, but we pinpointed gestational days (GD) 10.5-11.5 as a transition period for both placenta and embryo. Isotope tracing revealed differences in carbohydrate metabolism between the tissues and rapid glucose-dependent purine synthesis, especially in the embryo. Glucose's contribution to the tricarboxylic acid (TCA) cycle rises throughout midgestation in the embryo but not in the placenta. By GD12.5, compartmentalized metabolic programmes are apparent within the embryo, including different nutrient contributions to the TCA cycle in different organs. To contextualize developmental anomalies associated with Mendelian metabolic defects, we analysed mice deficient in LIPT1, the enzyme that activates 2-ketoacid dehydrogenases related to the TCA cycle4,5. LIPT1 deficiency suppresses TCA cycle metabolism during the GD10.5-GD11.5 transition, perturbs brain, heart and erythrocyte development and leads to embryonic demise by GD11.5. These data document individualized metabolic programmes in developing organs in utero.


Asunto(s)
Ciclo del Ácido Cítrico , Desarrollo Fetal , Metabolómica , Placenta , Animales , Embrión de Mamíferos/metabolismo , Femenino , Glucosa/metabolismo , Mamíferos/metabolismo , Ratones , Placenta/metabolismo , Embarazo
17.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35110412

RESUMEN

The pentose phosphate pathway is a major source of NADPH for oxidative stress resistance in cancer cells but there is limited insight into its role in metastasis, when some cancer cells experience high levels of oxidative stress. To address this, we mutated the substrate binding site of glucose 6-phosphate dehydrogenase (G6PD), which catalyzes the first step of the pentose phosphate pathway, in patient-derived melanomas. G6PD mutant melanomas had significantly decreased G6PD enzymatic activity and depletion of intermediates in the oxidative pentose phosphate pathway. Reduced G6PD function had little effect on the formation of primary subcutaneous tumors, but when these tumors spontaneously metastasized, the frequency of circulating melanoma cells in the blood and metastatic disease burden were significantly reduced. G6PD mutant melanomas exhibited increased levels of reactive oxygen species, decreased NADPH levels, and depleted glutathione as compared to control melanomas. G6PD mutant melanomas compensated for this increase in oxidative stress by increasing malic enzyme activity and glutamine consumption. This generated a new metabolic vulnerability as G6PD mutant melanomas were more dependent upon glutaminase than control melanomas, both for oxidative stress management and anaplerosis. The oxidative pentose phosphate pathway, malic enzyme, and glutaminolysis thus confer layered protection against oxidative stress during metastasis.


Asunto(s)
Glucosafosfato Deshidrogenasa/metabolismo , Glutamina/metabolismo , Melanoma/metabolismo , Estrés Oxidativo/fisiología , Animales , Humanos , Ratones , Ratones Endogámicos NOD , NADP/metabolismo , Oxidación-Reducción , Vía de Pentosa Fosfato/fisiología , Especies Reactivas de Oxígeno/metabolismo
18.
Cancer Discov ; 11(11): 2682-2692, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34649956

RESUMEN

Metastasis is an inefficient process in which the vast majority of cancer cells are fated to die, partly because they experience oxidative stress. Metastasizing cancer cells migrate through diverse environments that differ dramatically from their tumor of origin, leading to redox imbalances. The rare metastasizing cells that survive undergo reversible metabolic changes that confer oxidative stress resistance. We review the changes in redox regulation that cancer cells undergo during metastasis. By better understanding these mechanisms, it may be possible to develop pro-oxidant therapies that block disease progression by exacerbating oxidative stress in cancer cells. SIGNIFICANCE: Oxidative stress often limits cancer cell survival during metastasis, raising the possibility of inhibiting cancer progression with pro-oxidant therapies. This is the opposite strategy of treating patients with antioxidants, an approach that worsened outcomes in large clinical trials.


Asunto(s)
Neoplasias , Antioxidantes/metabolismo , Antioxidantes/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
19.
Nat Protoc ; 16(11): 5123-5145, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34535790

RESUMEN

Cancer cells undergo diverse metabolic adaptations to meet the energetic demands imposed by dysregulated growth and proliferation. Assessing metabolism in intact tumors allows the investigator to observe the combined metabolic effects of numerous cancer cell-intrinsic and -extrinsic factors that cannot be fully captured in culture models. We have developed methods to use stable isotope-labeled nutrients (e.g., [13C]glucose) to probe metabolic activity within intact tumors in vivo, in mice and humans. In these methods, the labeled nutrient is introduced to the circulation through an intravenous catheter prior to surgical resection of the tumor and adjacent nonmalignant tissue. Metabolism within these tissues during the infusion transfers the isotope label into metabolic intermediates from pathways supplied by the infused nutrient. Extracting metabolites from surgical specimens and analyzing their isotope labeling patterns provides information about metabolism in the tissue. We provide detailed information about this technique, from introduction of the labeled tracer through data analysis and interpretation, including streamlined approaches to quantify isotope labeling in informative metabolites extracted from tissue samples. We focus on infusions with [13C]glucose and the application of mass spectrometry to assess isotope labeling in intermediates from central metabolic pathways, including glycolysis, the tricarboxylic acid cycle and nonessential amino acid synthesis. We outline practical considerations to apply these methods to human subjects undergoing surgical resections of solid tumors. We also discuss the method's versatility and consider the relative advantages and limitations of alternative approaches to introduce the tracer, harvest the tissue and analyze the data.


Asunto(s)
Neoplasias , Animales , Marcaje Isotópico , Metabolómica , Ratones
20.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34140410

RESUMEN

We previously described a new osteogenic growth factor, osteolectin/Clec11a, which is required for the maintenance of skeletal bone mass during adulthood. Osteolectin binds to Integrin α11 (Itga11), promoting Wnt pathway activation and osteogenic differentiation by leptin receptor+ (LepR+) stromal cells in the bone marrow. Parathyroid hormone (PTH) and sclerostin inhibitor (SOSTi) are bone anabolic agents that are administered to patients with osteoporosis. Here we tested whether osteolectin mediates the effects of PTH or SOSTi on bone formation. We discovered that PTH promoted Osteolectin expression by bone marrow stromal cells within hours of administration and that PTH treatment increased serum osteolectin levels in mice and humans. Osteolectin deficiency in mice attenuated Wnt pathway activation by PTH in bone marrow stromal cells and reduced the osteogenic response to PTH in vitro and in vivo. In contrast, SOSTi did not affect serum osteolectin levels and osteolectin was not required for SOSTi-induced bone formation. Combined administration of osteolectin and PTH, but not osteolectin and SOSTi, additively increased bone volume. PTH thus promotes osteolectin expression and osteolectin mediates part of the effect of PTH on bone formation.


Asunto(s)
Factores de Crecimiento de Célula Hematopoyética/metabolismo , Lectinas Tipo C/metabolismo , Osteogénesis/efectos de los fármacos , Hormona Paratiroidea/farmacología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Hueso Esponjoso/efectos de los fármacos , Hueso Esponjoso/patología , Femenino , Factores de Crecimiento de Célula Hematopoyética/sangre , Factores de Crecimiento de Célula Hematopoyética/deficiencia , Humanos , Lectinas Tipo C/sangre , Lectinas Tipo C/deficiencia , Ratones Endogámicos C57BL , Tamaño de los Órganos/efectos de los fármacos , Osteoporosis/sangre , Premenopausia/sangre , Vía de Señalización Wnt/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA