Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Spec Care Dentist ; 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612790

RESUMEN

BACKGROUND: Kartagener syndrome (KS) is recognized as an inherited, autosomal recessive disorder characterized by a combination of chronic sinusitis, bronchiectasis, and situs inversus. It affects one in 12,500-50,000 live births worldwide. AIM: This paper aims to discuss the dental management of patients diagnosed with KS. CASE REPORT: A 31-year-old male with KS manifests by impaired cilia motility which increases the risk of a frequent lung infection. The dental examination revealed that the patient required comprehensive oral hygiene care which included patient education and nonsurgical periodontal therapy under local anesthesia. CONCLUSIONS: Dental care providers should ask affected patients with KS about their signs and symptoms of cardiac and pulmonary disease and seek consultation with their attending physician regarding these health concerns before the initiation of general anesthesia and perhaps conscious sedation administration. Patients with KS with emerging cardiac and/or respiratory impairment should be referred promptly for medical assessment.

2.
Sci Rep ; 10(1): 20179, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33214607

RESUMEN

In the United States, 5-12% of adults have at least one symptom of temporomandibular joint (TMJ) disorders, including TMJ osteoarthritis (TMJ-OA). However, there is no chondroprotective agent that is approved for clinical application. We showed that LOXL2 is elevated in the regenerative response during fracture healing in mice and has a critical role in chondrogenic differentiation. Indeed, LOXL2 is an anabolic effector that attenuates pro-inflammatory signaling in OA cartilage of the TMJ and knee joint, induces chondroprotective and regenerative responses, and attenuates NF-kB signaling. The specific goal of the study was to evaluate if adenoviral delivery of LOXL2 is anabolic to human and mouse TMJ condylar cartilage in vivo and evaluate the protective and anabolic effect on cartilage-specific factors. We employed two different models to assess TMJ-OA. In one model, clinical TMJ-OA cartilage from 5 different samples in TMJ-OA cartilage plugs were implanted subcutaneously in nude mice. Adenovirus LOXL2 -treated implants showed higher mRNA levels of LOXL2, ACAN, and other anabolic genes compared to the adenovirus-Empty-treated implants. Further characterization by RNA-seq analysis showed LOXL2 promotes proteoglycan networks and extracellular matrix in human TMJ-OA cartilage implants in vivo. In order to evaluate if LOXL2-induced functional and sex-linked differences, both male and female four-month-old chondrodysplasia (Cho/+) mice, which develop progressive TMJ-OA due to a point mutation in the Col11a1 gene, were subjected to intraperitoneal injection with Adv-RFP-LOXL2 every 2 weeks for 12 weeks. The data showed that adenovirus delivery of LOXL2 upregulated LOXL2 and aggrecan (Acan), whereas MMP13 expression was slightly downregulated. The fold change expression of Acan and Runx2 induced by Adv-RFP-LOXL2 was higher in females compared to males. Interestingly, Adv-RFP-LOXL2 injection significantly increased Rankl expression in male but there was no change in females, whereas VegfB gene expression was increased in females, but not in males, as compared to those injected with Adv-RFP-Empty in respective groups. Our findings indicate that LOXL2 can induce specifically the expression of Acan and other anabolic genes in two preclinical models in vivo. Further, LOXL2 has beneficial functions in human TMJ-OA cartilage implants and promotes gender-specific anabolic responses in Cho/+ mice with progressive TMJ-OA, suggesting its merit for further study as an anabolic therapy for TMJ-OA.


Asunto(s)
Agrecanos/metabolismo , Aminoácido Oxidorreductasas/metabolismo , Cartílago Articular/patología , Osteoartritis/patología , Trastornos de la Articulación Temporomandibular/metabolismo , Adenoviridae/genética , Anciano , Aminoácido Oxidorreductasas/administración & dosificación , Aminoácido Oxidorreductasas/genética , Animales , Cartílago Articular/metabolismo , Cartílago Articular/trasplante , Condrocitos/metabolismo , Colágeno/genética , Modelos Animales de Enfermedad , Femenino , Redes Reguladoras de Genes , Humanos , Masculino , Metabolismo/genética , Ratones Mutantes , Ratones Desnudos , Persona de Mediana Edad , Osteoartritis/metabolismo , Caracteres Sexuales , Trastornos de la Articulación Temporomandibular/patología
3.
Int J Mol Sci ; 20(19)2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31569601

RESUMEN

BACKGROUND: The goal of this study was to determine if adenovirus-delivered LOXL2 protects against progressive knee osteoarthritis (OA), assess its specific mechanism of action; and determine if the overexpression of LOXL2 in transgenic mice can protect against the development of OA-related cartilage damage and joint disability. METHODS: Four-month-old Cho/+ male and female mice were intraperitoneally injected with either Adv-RFP-LOXL2 or an empty vector twice a month for four months. The proteoglycan levels and the expression of anabolic and catabolic genes were examined by immunostaining and qRT-PCR. The effect of LOXL2 expression on signaling was tested via the pro-inflammatory cytokine IL1ß in the cartilage cell line ATDC5. Finally; the OA by monosodium iodoacetate (MIA) injection was also induced in transgenic mice with systemic overexpression of LOXL2 and examined gene expression and joint function by treadmill tests and assessment of allodynia. RESULTS: The adenovirus treatment upregulated LOXL2; Sox9; Acan and Runx2 expression in both males and females. The Adv-RFP-LOXL2 injection; but not the empty vector injection increased proteoglycan staining and aggrecan expression but reduced MMP13 expression. LOXL2 attenuated IL-1ß-induced phospho-NF-κB/p65 and rescued chondrogenic lineage-related genes in ATDC5 cells; demonstrating one potential protective mechanism. LOXL2 attenuated phospho-NF-κB independent of its enzymatic activity. Finally; LOXL2-overexpressing transgenic mice were protected from MIA-induced OA-related functional changes; including the time and distance traveled on the treadmill and allodynia. CONCLUSION: Our study demonstrates that systemic LOXL2 adenovirus or LOXL2 genetic overexpression in mice can protect against OA. These findings demonstrate the potential for LOXL2 gene therapy for knee-OA clinical treatment in the future.


Asunto(s)
Envejecimiento/genética , Aminoácido Oxidorreductasas/genética , Osteoartritis de la Rodilla/etiología , Osteoartritis de la Rodilla/patología , Adenoviridae/genética , Aminoácido Oxidorreductasas/metabolismo , Animales , Artritis Experimental , Cartílago Articular/metabolismo , Cartílago Articular/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Interleucina-1beta/metabolismo , Ratones , Ratones Transgénicos , FN-kappa B/metabolismo , Osteoartritis de la Rodilla/metabolismo , Transducción Genética
4.
Oncotarget ; 8(43): 73372-73386, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-29088714

RESUMEN

Lysine-specific demethylase 1 (LSD1) is a nuclear histone demethylase and a member of the amine oxidase (AO) family. LSD1 is a flavin-containing AO that specifically catalyzes the demethylation of mono- and di-methylated histone H3 lysine 4 through an FAD-dependent oxidative reaction. LSD1 is inappropriately upregulated in lung, liver, brain and esophageal cancers, where it promotes cancer initiation, progression, and metastasis. However, unlike other lysine-specific demethylases, the role and specific targets of LSD1 in oral squamous cell carcinoma (OSCC) pathogenesis remain unknown. We show that LSD1 protein expression was increased in malignant OSCC tissues in a clinical tissue microarray, and its expression correlated with progressive tumor stages. In an orthotopic oral cancer mouse model, LSD1 overexpression in aggressive HSC-3 cells promoted metastasis whereas knockdown of LSD1 inhibited tumor spread, suggesting that LSD1 is a key regulator of OSCC metastasis. Pharmacological inhibition of LSD1 using a specific small molecule inhibitor, GSK-LSD1, down-regulated EGF signaling pathway. Further, GSK-LSD1 attenuates CTGF/CCN2, MMP13, LOXL4 and vimentin expression but increased E-cadherin expression in pre-existing, patient-derived tonsillar OSCC xenografts. Similarly, GSK-LSD1 inhibited proliferation and CTGF expression in mesenchymal cells, including myoepithelial cells and osteosarcoma cells. In addition, gene set enrichment analysis revealed that GSK-LSD1 increased p53 expression and apoptosis while inhibiting c-myc, ß-catenin and YAP-induced oncogenic transcriptional networks. These data reveal that aberrant LSD1 activation regulates key OSCC microenvironment and EMT promoting factors, including CTGF, LOXL4 and MMP13.

5.
Arthritis Res Ther ; 19(1): 179, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28764769

RESUMEN

BACKGROUND: Lysyl oxidase like-2 (LOXL2) is a copper-dependent amine oxidase. Our previous studies showed that LOXL2 is elevated during mouse fracture healing. The goal of this study was to evaluate the potential of LOXL2 to act as an anabolic agent in cartilage affected by osteoarthritis (OA). METHODS: LOXL2 was visualized in tissues from human knee and hip joints and temporomandibular joints (TMJ) by immunofluorescence. The activity of LOXL2 in human articular and TMJ chondrocytes was assessed by cell-based assays, microarray analysis, and RT-qPCR, and LOXL2-mediated activation of NF-κB and extracellular signal-related kinase (ERK) signaling pathways was measured by western blotting. To examine LOXL2-induced effect in vivo, we implanted Matrigel-imbedded human chondrocytes into nude mice and exposed them to exogenous LOXL2 for 6 weeks. Finally, LOXL2-induced effects on collagen type 2 α1 (COL2A1) and phospho-SMAD2/3 were evaluated by immunofluorescence analysis. RESULTS: LOXL2 staining was detected in damaged regions of human TMJ, hip and knee joints affected by OA. Stimulation with transforming growth factor (TGF)-ß1 upregulated LOXL2 expression, while pro-inflammatory cytokines IL-1ß and TNF-α downregulated LOXL2, in human chondrocytes. Viral transduction of LOXL2 in OA chondrocytes increased the mRNA levels of chondroitin sulfate proteoglycan (CSPG4), aggrecan (ACAN), sex determining region Y-box containing gene 9 (SOX9), and COL2A1 but reduced the levels of extracellular matrix (ECM)-degrading enzymes matrix metalloproteinase (MMP)1, MMP3, and MMP13. Further, forced expression of LOXL2 promoted chondrogenic lineage-specific gene expression, increased the expression of COL2A1 in the presence of TNF-α, and inhibited chondrocyte apoptosis. LOXL2 expression also inhibited IL-1ß-induced phospho-NF-κB/p65 and TGF-ß1-induced ERK1/2 phosphorylation. Matrigel constructs of human chondrocytes from the knee joint and TMJ implanted in nude mice showed anabolic responses after LOXL2 transduction, including increased expression of SOX9, ACAN, and COL2A1. Finally, immunofluorescence staining revealed co-localization of LOXL2 with SOX9 in the nuclei of cells in the implants, decreased phospho-SMAD2/3, and increased COL2A1 staining. CONCLUSION: Our results suggest that although LOXL2 is upregulated in cartilage affected by OA, this may be a protective response that promotes anabolism while inhibiting specific catabolic responses in the pathophysiology of OA.


Asunto(s)
Cartílago Articular/metabolismo , Articulación de la Rodilla/metabolismo , Osteoartritis/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Articulación Temporomandibular/metabolismo , Animales , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Interleucina-1beta/farmacología , Ratones Desnudos , Osteoartritis/genética , Proteína-Lisina 6-Oxidasa/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Crecimiento Transformador beta1/farmacología , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...