Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(26): 11268-11279, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37345980

RESUMEN

This study describes an interlaboratory comparison (ILC) among nine (9) laboratories to evaluate and validate the standard operation procedure (SOP) for single-particle (sp) ICP-TOFMS developed within the context of the Horizon 2020 project ACEnano. The ILC was based on the characterization of two different Pt nanoparticle (NP) suspensions in terms of particle mass, particle number concentration, and isotopic composition. The two Pt NP suspensions were measured using icpTOF instruments (TOFWERK AG, Switzerland). Two Pt NP samples were characterized and mass equivalent spherical sizes (MESSs) of 40.4 ± 7 nm and 58.8 ± 8 nm were obtained, respectively. MESSs showed <16% relative standard deviation (RSD) among all participating labs and <4% RSD after exclusion of the two outliers. A good agreement was achieved between the different participating laboratories regarding particle mass, but the particle number concentration results were more scattered, with <53% RSD among all laboratories, which is consistent with results from previous ILC studies conducted using ICP-MS instrumentation equipped with a sequential mass spectrometer. Additionally, the capabilities of sp-ICP-TOFMS to determine masses on a particle basis are discussed with respect to the potential for particle density determination. Finally, because quasi-simultaneous multi-isotope and multi-element determinations are a strength of ICP-TOFMS instrumentation, the precision and trueness of isotope ratio determinations were assessed. The average of 1000 measured particles yielded a precision of below ±1% for intensity ratios of the most abundant Pt isotopes, i.e.194Pt and 195Pt, while the accuracy of isotope ratios with the lower abundant isotopes was limited by counting statistics.

2.
Nanomaterials (Basel) ; 12(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234435

RESUMEN

Particulate emissions from vehicle exhaust catalysts are the primary contributors to platinum group elements (PGEs) being released into roadside environments, especially platinum (Pt) particles. With increasing traffic density, it is essential to quantify the emission, accumulation, and potential health effects of traffic-emitted Pt particles. In this study, three procedures were investigated to extract Pt nanoparticles (NPs) from sediments and characterize them by single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOF-MS). For this purpose, a reference sediment sample was spiked with manufactured Pt NPs. Pt NPs' extraction recoveries reached from 50% up to 102%, depending on the extraction procedure and whether the particle mass or number was used as the metric. Between 17% and 35% of the Pt NPs were found as unassociated Pt NPs and between 31% and 78% as Pt NPs hetero-aggregated with other sediment particles. Multi-elemental analysis of Pt-containing NPs in the pristine sediment revealed frequently co-occurring elements such as Au, Bi, and Ir, which can be used to determine a natural background baseline. Our results demonstrated that spICP-TOF-MS elemental characterization allows for distinguishing anthropogenic Pt NPs from the natural background. In the future, this could enable the sensitive monitoring of PGE release from anthropogenic sources such as vehicle exhausts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...