Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826330

RESUMEN

Genes encoding the RNA-binding proteins FUS, EWSR1, and TAF15 (FET proteins) are involved in chromosomal translocations in rare sarcomas. FET-rearranged sarcomas are often aggressive malignancies affecting patients of all ages. New therapies are needed. These translocations fuse the 5' portion of the FET gene with a 3' partner gene encoding a transcription factor (TF). The resulting fusion proteins are oncogenic TFs with a FET protein low complexity domain (LCD) and a DNA binding domain. FET fusion proteins have proven stubbornly difficult to target directly and promising strategies target critical co-regulators. One candidate is lysine specific demethylase 1 (LSD1). LSD1 is recruited by multiple FET fusions, including EWSR1::FLI1. LSD1 promotes EWSR1::FLI1 activity and treatment with the noncompetitive inhibitor SP-2509 blocks EWSR1::FLI1 transcriptional function. A similar molecule, seclidemstat (SP-2577), is currently in clinical trials for FET-rearranged sarcomas (NCT03600649). However, whether seclidemstat has pharmacological activity against FET fusions has not been demonstrated. Here, we evaluate the in vitro potency of seclidemstat against multiple FET-rearranged sarcoma cell lines, including Ewing sarcoma, desmoplastic small round cell tumor, clear cell sarcoma, and myxoid liposarcoma. We also define the transcriptomic effects of seclidemstat treatment and evaluated the activity of seclidemstat against FET fusion transcriptional regulation. Seclidemstat showed potent activity in cell viability assays across FET-rearranged sarcomas and disrupted the transcriptional function of all tested fusions. Though epigenetic and targeted inhibitors are unlikely to be effective as a single agents in the clinic, these data suggest seclidemstat remains a promising new treatment strategy for patients with FET-rearranged sarcomas.

2.
bioRxiv ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38352344

RESUMEN

Ewing sarcoma is the second most common bone cancer in children and young adults. In 85% of patients, a translocation between chromosomes 11 and 22 results in a potent fusion oncoprotein, EWSR1::FLI1. EWSR1::FLI1 is the only genetic alteration in an otherwise unaltered genome of Ewing sarcoma tumors. The EWSR1 portion of the protein is an intrinsically disordered domain involved in transcriptional regulation by EWSR1::FLI1. The FLI portion of the fusion contains a DNA binding domain shown to bind core GGAA motifs and GGAA repeats. A small alpha-helix in the DNA binding domain of FLI1, DBD-𝛼4 helix, is critical for the transcription function of EWSR1::FLI1. In this study, we aimed to understand the mechanism by which the DBD-𝛼4 helix promotes transcription, and therefore oncogenic transformation. We utilized a multi-omics approach to assess chromatin organization, active chromatinmarks, genome binding, and gene expression in cells expressing EWSR1::FLI1 constructs with and without the DBD-𝛼4 helix. Our studies revealed DBD-𝛼4 helix is crucial for cooperative binding of EWSR1::FLI1 at GGAA microsatellites. This binding underlies many aspects of genome regulation by EWSR1::FLI1 such as formation of TADs, chromatin loops, enhancers and productive transcription hubs.

3.
BMC Biol ; 21(1): 98, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106386

RESUMEN

BACKGROUND: Tumors are complex tissues containing collections of phenotypically diverse malignant and nonmalignant cells. We know little of the mechanisms that govern heterogeneity of tumor cells nor of the role heterogeneity plays in overcoming stresses, such as adaptation to different microenvironments. Osteosarcoma is an ideal model for studying these mechanisms-it exhibits widespread inter- and intra-tumoral heterogeneity, predictable patterns of metastasis, and a lack of clear targetable driver mutations. Understanding the processes that facilitate adaptation to primary and metastatic microenvironments could inform the development of therapeutic targeting strategies. RESULTS: We investigated single-cell RNA-sequencing profiles of 47,977 cells obtained from cell line and patient-derived xenograft models as cells adapted to growth within primary bone and metastatic lung environments. Tumor cells maintained phenotypic heterogeneity as they responded to the selective pressures imposed during bone and lung colonization. Heterogenous subsets of cells defined by distinct transcriptional profiles were maintained within bone- and lung-colonizing tumors, despite high-level selection. One prominent heterogenous feature involving glucose metabolism was clearly validated using immunofluorescence staining. Finally, using concurrent lineage tracing and single-cell transcriptomics, we found that lung colonization enriches for multiple clones with distinct transcriptional profiles that are preserved across cellular generations. CONCLUSIONS: Response to environmental stressors occurs through complex and dynamic phenotypic adaptations. Heterogeneity is maintained, even in conditions that enforce clonal selection. These findings likely reflect the influences of developmental processes promoting diversification of tumor cell subpopulations, which are retained, even in the face of selective pressures.


Asunto(s)
Neoplasias Óseas , Neoplasias Pulmonares , Osteosarcoma , Humanos , Osteosarcoma/genética , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Perfilación de la Expresión Génica , Neoplasias Óseas/genética , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Microambiente Tumoral/genética
4.
Nat Cell Biol ; 25(2): 285-297, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36658220

RESUMEN

Transcription factors (TFs) are frequently mutated in cancer. Paediatric cancers exhibit few mutations genome-wide but frequently harbour sentinel mutations that affect TFs, which provides a context to precisely study the transcriptional circuits that support mutant TF-driven oncogenesis. A broadly relevant mechanism that has garnered intense focus involves the ability of mutant TFs to hijack wild-type lineage-specific TFs in self-reinforcing transcriptional circuits. However, it is not known whether this specific type of circuitry is equally crucial in all mutant TF-driven cancers. Here we describe an alternative yet central transcriptional mechanism that promotes Ewing sarcoma, wherein constraint, rather than reinforcement, of the activity of the fusion TF EWS-FLI supports cancer growth. We discover that ETV6 is a crucial TF dependency that is specific to this disease because it, counter-intuitively, represses the transcriptional output of EWS-FLI. This work discovers a previously undescribed transcriptional mechanism that promotes cancer.


Asunto(s)
Sarcoma de Ewing , Niño , Humanos , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/genética
5.
Nucleic Acids Res ; 50(17): 9814-9837, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36124657

RESUMEN

Ewing sarcoma is a prototypical fusion transcription factor-associated pediatric cancer that expresses EWS/FLI or a highly related FET/ETS chimera. EWS/FLI dysregulates transcription to induce and maintain sarcomagenesis, but the mechanisms utilized are not fully understood. We therefore sought to define the global effects of EWS/FLI on chromatin conformation and transcription in Ewing sarcoma cells using a well-validated 'knock-down/rescue' model of EWS/FLI function in combination with next generation sequencing assays to evaluate how the chromatin landscape changes with loss, and recovery, of EWS/FLI expression. We found that EWS/FLI (and EWS/ERG) genomic localization is largely conserved across multiple patient-derived Ewing sarcoma cell lines. This EWS/FLI binding signature is associated with establishment of topologically-associated domain (TAD) boundaries, compartment activation, enhancer-promoter looping that involve both intra- and inter-TAD interactions, and gene activation. In addition, EWS/FLI co-localizes with the loop-extrusion factor cohesin to promote chromatin loops and TAD boundaries. Importantly, local chromatin features provide the basis for transcriptional heterogeneity in regulation of direct EWS/FLI target genes across different Ewing sarcoma cell lines. These data demonstrate a key role of EWS/FLI in mediating genome-wide changes in chromatin configuration and support the notion that fusion transcription factors serve as master regulators of three-dimensional reprogramming of chromatin.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing , Línea Celular Tumoral , Niño , Cromatina/genética , Humanos , Proteínas de Fusión Oncogénica/genética , Proteína Proto-Oncogénica c-fli-1/genética , Proteína EWS de Unión a ARN/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo
6.
Mol Cancer Res ; 20(7): 1035-1046, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35298000

RESUMEN

Expression of the fusion oncoprotein EWS/FLI causes Ewing sarcoma, an aggressive pediatric tumor characterized by widespread epigenetic deregulation. These epigenetic changes are targeted by novel lysine-specific demethylase-1 (LSD1) inhibitors, which are currently in early-phase clinical trials. Single-agent-targeted therapy often induces resistance, and successful clinical development requires knowledge of resistance mechanisms, enabling the design of effective combination strategies. Here, we used a genome-scale CRISPR-Cas9 loss-of-function screen to identify genes whose knockout (KO) conferred resistance to the LSD1 inhibitor SP-2509 in Ewing sarcoma cell lines. Multiple genes required for mitochondrial electron transport chain (ETC) complexes III and IV function were hits in our screen. We validated this finding using genetic and chemical approaches, including CRISPR KO, ETC inhibitors, and mitochondrial depletion. Further global transcriptional profiling revealed that altered complex III/IV function disrupted the oncogenic program mediated by EWS/FLI and LSD1 and blunted the transcriptomic response to SP-2509. IMPLICATIONS: These findings demonstrate that mitochondrial dysfunction modulates SP-2509 efficacy and suggest that new therapeutic strategies combining LSD1 with agents that prevent mitochondrial dysfunction may benefit patients with this aggressive malignancy.


Asunto(s)
Neoplasias Óseas , Sarcoma de Ewing , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Niño , Resistencia a Medicamentos , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Mitocondrias/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología
7.
Mol Cancer Res ; 19(11): 1795-1801, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34465585

RESUMEN

Ewing sarcoma is a pediatric bone cancer defined by a chromosomal translocation fusing one of the FET family members to an ETS transcription factor. There have been seven reported chromosomal translocations, with the most recent reported over a decade ago. We now report a novel FET/ETS translocation involving FUS and ETV4 detected in a patient with Ewing sarcoma. Here, we characterized FUS/ETV4 by performing genomic localization and transcriptional regulatory studies on numerous FET/ETS fusions in a Ewing sarcoma cellular model. Through this comparative analysis, we demonstrate significant similarities across these fusions, and in doing so, validate FUS/ETV4 as a bona fide Ewing sarcoma translocation. This study presents the first genomic comparison of Ewing sarcoma-associated translocations and reveals that the FET/ETS fusions share highly similar, but not identical, genomic localization and transcriptional regulation patterns. These data strengthen the notion that FET/ETS fusions are key drivers of, and thus pathognomonic for, Ewing sarcoma. IMPLICATIONS: Identification and initial characterization of the novel Ewing sarcoma fusion, FUS/ETV4, expands the family of Ewing fusions and extends the diagnostic possibilities for this aggressive tumor of adolescents and young adults.


Asunto(s)
Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Sarcoma de Ewing/genética , Translocación Genética/genética , Humanos , Recién Nacido , Proteínas de Fusión Oncogénica/genética , Sarcoma de Ewing/patología
8.
Oncogene ; 40(29): 4759-4769, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34145397

RESUMEN

Ewing sarcoma is an aggressive bone cancer of children and young adults defined by the presence of a chromosomal translocation: t(11;22)(q24;q12). The encoded protein, EWS/FLI, fuses the amino-terminal domain of EWS to the carboxyl-terminus of FLI. The EWS portion is an intrinsically disordered transcriptional regulatory domain, while the FLI portion contains an ETS DNA-binding domain and two flanking regions of unknown function. Early studies using non-Ewing sarcoma models provided conflicting information on the roles of each domain of FLI in EWS/FLI oncogenic function. We therefore sought to define the specific contributions of each FLI domain to EWS/FLI activity in a well-validated Ewing sarcoma model and, in doing so, to better understand Ewing sarcoma development mediated by the fusion protein. We analyzed a series of engineered EWS/FLI mutants with alterations in the FLI portion using a variety of assays. Fluorescence anisotropy, CUT&RUN, and ATAC-sequencing experiments revealed that the isolated ETS domain is sufficient to maintain the normal DNA-binding and chromatin accessibility function of EWS/FLI. In contrast, RNA-sequencing and soft agar colony formation assays revealed that the ETS domain alone was insufficient for transcriptional regulatory and oncogenic transformation functions of the fusion protein. We found that an additional alpha-helix immediately downstream of the ETS domain is required for full transcriptional regulation and EWS/FLI-mediated oncogenesis. These data demonstrate a previously unknown role for FLI in transcriptional regulation that is distinct from its DNA-binding activity. This activity is critical for the cancer-causing function of EWS/FLI and may lead to novel therapeutic approaches.


Asunto(s)
Oncogenes , Niño , Humanos , Fagocitosis , Sarcoma de Ewing
9.
Epigenetics ; 16(4): 405-424, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32842875

RESUMEN

Paediatric cancers commonly harbour quiet mutational landscapes and are instead characterized by single driver events such as the mutation of critical chromatin regulators, expression of oncohistones, or expression of oncogenic fusion proteins. These events ultimately promote malignancy through disruption of normal gene regulation and development. The driver protein in Ewing sarcoma, EWS/FLI, is an oncogenic fusion and transcription factor that reshapes the enhancer landscape, resulting in widespread transcriptional dysregulation. Lysine-specific demethylase 1 (LSD1) is a critical functional partner for EWS/FLI as inhibition of LSD1 reverses the transcriptional activity of EWS/FLI. However, how LSD1 participates in fusion-directed epigenomic regulation and aberrant gene activation is unknown. We now show EWS/FLI causes dynamic rearrangement of LSD1 and we uncover a role for LSD1 in gene activation through colocalization at EWS/FLI binding sites throughout the genome. LSD1 is integral to the establishment of Ewing sarcoma super-enhancers at GGAA-microsatellites, which ubiquitously overlap non-microsatellite loci bound by EWS/FLI. Together, we show that EWS/FLI induces widespread changes to LSD1 distribution in a process that impacts the enhancer landscape throughout the genome.


Asunto(s)
Cromatina , Lisina , Línea Celular Tumoral , Niño , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de Fusión Oncogénica/genética , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo
10.
J Vis Exp ; (160)2020 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-32658189

RESUMEN

Many cancers are characterized by chromosomal translocations which result in the expression of oncogenic fusion transcription factors. Typically, these proteins contain an intrinsically disordered domain (IDD) fused with the DNA-binding domain (DBD) of another protein and orchestrate widespread transcriptional changes to promote malignancy. These fusions are often the sole recurring genomic aberration in the cancers they cause, making them attractive therapeutic targets. However, targeting oncogenic transcription factors requires a better understanding of the mechanistic role that low-complexity, IDDs play in their function. The N-terminal domain of EWSR1 is an IDD involved in a variety of oncogenic fusion transcription factors, including EWS/FLI, EWS/ATF, and EWS/WT1. Here, we use RNA-sequencing to investigate the structural features of the EWS domain important for transcriptional function of EWS/FLI in Ewing sarcoma. First shRNA-mediated depletion of the endogenous fusion from Ewing sarcoma cells paired with ectopic expression of a variety of EWS-mutant constructs is performed. Then RNA-sequencing is used to analyze the transcriptomes of cells expressing these constructs to characterize the functional deficits associated with mutations in the EWS domain. By integrating the transcriptomic analyses with previously published information about EWS/FLI DNA binding motifs, and genomic localization, as well as functional assays for transforming ability, we were able to identify structural features of EWS/FLI important for oncogenesis and define a novel set of EWS/FLI target genes critical for Ewing sarcoma. This paper demonstrates the use of RNA-sequencing as a method to map the structure-function relationship of the intrinsically disordered domain of oncogenic transcription factors.


Asunto(s)
Perfilación de la Expresión Génica , Proteínas de Fusión Oncogénica/química , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/química , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/química , Proteína EWS de Unión a ARN/metabolismo , Relación Estructura-Actividad , Sitios de Unión , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Humanos , Mutación , Proteínas de Fusión Oncogénica/genética , Dominios Proteicos , Proteína Proto-Oncogénica c-fli-1/genética , Proteína EWS de Unión a ARN/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología
11.
Cancer Drug Resist ; 3(3): 550-562, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35582455

RESUMEN

Evasion of immune surveillance is one of the hallmarks of cancer. Although the adaptive immune system has been targeted via checkpoint inhibition, many patients do not sustain durable remissions due to the heterogeneity of the tumor microenvironment, so additional strategies are needed. The innate immune system has its own set of checkpoints, and tumors have co-opted this system by expressing surface receptors that inhibit phagocytosis. One of these receptors, CD47, also known as the "don't eat me" signal, has been found to be overexpressed by most cancer histologies and has been successfully targeted by antibodies blocking the receptor or its ligand, signal regulatory protein α (SIRPα). By enabling phagocytosis via antigen-presenting cells, interruption of CD47-SIRPα binding leads to earlier downstream activation of the adaptive immune system. Recent and ongoing clinical trials are demonstrating the safety and efficacy of CD47 blockade in combination with monoclonal antibodies, chemotherapy, or checkpoint inhibitors for adult cancer histologies. The aim of this review is to highlight the current literature and research on CD47, provide an impetus for investigation of its blockade in pediatric cancer histologies, and provide a rationale for new combination therapies in these patients.

12.
Oncotarget ; 10(39): 3865-3878, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31231465

RESUMEN

Ewing sarcoma is the second most common solid bone malignancy diagnosed in pediatric and young adolescent populations. Despite aggressive multi-modal treatment strategies, 5-year event-free survival remains at 75% for patients with localized disease and 20% for patients with metastases. Thus, the need for novel therapeutic options is imperative. Recent studies have focused on epigenetic misregulation in Ewing sarcoma development and potential new oncotargets for treatment. This project focused on the study of LSD2, a flavin-dependent histone demethylase found to be overexpressed in numerous cancers. We previously demonstrated that Ewing sarcoma cell lines are extremely susceptible to small molecule LSD1 blockade with SP-2509. Drug sensitivity correlated with the degree of LSD2 induction following treatment. As such, the purpose of this study was to determine the role of LSD2 in the epigenetic regulation of Ewing sarcoma, characterize genes regulated by LSD2, and examine the impact of SP-2509 drug treatment on LSD2 gene regulation. Genetic depletion (shRNA) of LSD2 significantly impaired oncogenic transformation with only a modest impact on proliferation. Transcriptional analysis of Ewing sarcoma cells following LSD2knockdown revealed modulation of genes primarily involved in metabolic regulation and nervous system development. Gene set enrichment analysis showed that SP-2509 does not impact LSD2 targeted genes. Although there are currently no small molecule agents that specifically target LSD2, our results support further investigations into agents that can inhibit this histone demethylase as a possible treatment for Ewing sarcoma.

13.
Genes Cancer ; 10(1-2): 21-38, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30899417

RESUMEN

EWS/FLI is the pathognomic fusion oncoprotein that drives Ewing sarcoma. The amino-terminal EWS portion coordinates transcriptional regulation and the carboxy-terminal FLI portion contains an ETS DNA-binding domain. EWS/FLI acts as an aberrant transcription factor, orchestrating a complex mix of gene activation and repression, from both high affinity ETS motifs and repetitive GGAA-microsatellites. Our overarching hypothesis is that executing multi-faceted transcriptional regulation requires EWS/FLI to use distinct molecular mechanisms at different loci. Many attempts have been made to map distinct functions to specific features of the EWS domain, but described deletion mutants are either fully active or completely "dead" and other approaches have been limited by the repetitive and disordered nature of the EWS domain. Here, we use transcriptomic approaches to show an EWS/FLI mutant, called DAF, previously thought to be nonfunctional, displays context-dependent and partial transcriptional activity but lacks transforming capacity. Using transcriptomic and phenotypic anchorage-independent growth profiles of other EWS/FLI mutants coupled with reported EWS/FLI localization data, we have mapped the critical structure-function requirements of the EWS domain for EWS/FLI-mediated oncogenesis. This approach defined unique classes of EWS/FLI response elements and revealed novel structure-function relationships required for EWS/FLI activation at these response elements.

14.
Clin Cancer Res ; 25(11): 3417-3429, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30723142

RESUMEN

PURPOSE: The successful clinical translation of compounds that target specific oncogenic transcription factors will require an understanding of the mechanism of target suppression to optimize the dose and schedule of administration. We have previously shown trabectedin reverses the gene signature of the EWS-FLI1 transcription factor. In this report, we establish the mechanism of suppression and use it to justify the reevaluation of this drug in the clinic in patients with Ewing sarcoma.Experimental Design: We demonstrate a novel epigenetic mechanism of trabectedin using biochemical fractionation and chromatin immunoprecipitation sequencing. We link the effect to drug schedule and EWS-FLI1 downstream target expression using confocal microscopy, qPCR, Western blot analysis, and cell viability assays. Finally, we quantitate target suppression within the three-dimensional architecture of the tumor in vivo using 18F-FLT imaging. RESULTS: Trabectedin evicts the SWI/SNF chromatin-remodeling complex from chromatin and redistributes EWS-FLI1 in the nucleus leading to a marked increase in H3K27me3 and H3K9me3 at EWS-FLI1 target genes. These effects only occur at high concentrations of trabectedin leading to suppression of EWS-FLI1 target genes and a loss of cell viability. In vivo, low-dose irinotecan is required to improve the magnitude, penetrance, and duration of target suppression in the three-dimensional architecture of the tumor leading to differentiation of the Ewing sarcoma xenograft into benign mesenchymal tissue. CONCLUSIONS: These data provide the justification to evaluate trabectedin in the clinic on a short infusion schedule in combination with low-dose irinotecan with 18F-FLT PET imaging in patients with Ewing sarcoma.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Cromatina/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Proteína Proto-Oncogénica c-fli-1/antagonistas & inhibidores , Proteína EWS de Unión a ARN/antagonistas & inhibidores , Trabectedina/farmacología , Factores de Transcripción/genética , Transporte Activo de Núcleo Celular , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Proteínas de Fusión Oncogénica/sangre , Proteínas de Fusión Oncogénica/genética , Unión Proteica , Proteína Proto-Oncogénica c-fli-1/sangre , Proteína Proto-Oncogénica c-fli-1/genética , Proteína EWS de Unión a ARN/sangre , Proteína EWS de Unión a ARN/genética , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Mol Cancer Ther ; 17(9): 1902-1916, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29997151

RESUMEN

Multi-agent chemotherapeutic regimes remain the cornerstone treatment for Ewing sarcoma, the second most common bone malignancy diagnosed in pediatric and young adolescent populations. We have reached a therapeutic ceiling with conventional cytotoxic agents, highlighting the need to adopt novel approaches that specifically target the drivers of Ewing sarcoma oncogenesis. As KDM1A/lysine-specific demethylase 1 (LSD1) is highly expressed in Ewing sarcoma cell lines and tumors, with elevated expression levels associated with worse overall survival (P = 0.033), this study has examined biomarkers of sensitivity and mechanisms of cytotoxicity to targeted KDM1A inhibition using SP-2509 (reversible KDM1A inhibitor). We report, that innate resistance to SP-2509 was not observed in our Ewing sarcoma cell line cohort (n = 17; IC50 range, 81 -1,593 nmol/L), in contrast resistance to the next-generation KDM1A irreversible inhibitor GSK-LSD1 was observed across multiple cell lines (IC50 > 300 µmol/L). Although TP53/STAG2/CDKN2A status and basal KDM1A mRNA and protein levels did not correlate with SP-2509 response, induction of KDM1B following SP-2509 treatment was strongly associated with SP-2509 hypersensitivity. We show that the transcriptional profile driven by SP-2509 strongly mirrors KDM1A genetic depletion. Mechanistically, RNA-seq analysis revealed that SP-2509 imparts robust apoptosis through engagement of the endoplasmic reticulum stress pathway. In addition, ETS1/HIST1H2BM were specifically induced/repressed, respectively following SP-2509 treatment only in our hypersensitive cell lines. Together, our findings provide key insights into the mechanisms of SP-2509 cytotoxicity as well as biomarkers that can be used to predict KDM1A inhibitor sensitivity in Ewing sarcoma. Mol Cancer Ther; 17(9); 1902-16. ©2018 AACR.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Histona Demetilasas/antagonistas & inhibidores , Sarcoma de Ewing/tratamiento farmacológico , Adolescente , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias Óseas/enzimología , Neoplasias Óseas/genética , Línea Celular Tumoral , Niño , Estrés del Retículo Endoplásmico/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Interferencia de ARN , Sarcoma de Ewing/enzimología , Sarcoma de Ewing/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Bibliotecas de Moléculas Pequeñas/farmacología
16.
PLoS One ; 12(11): e0186275, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29091716

RESUMEN

Ewing sarcoma is a bone malignancy of children and young adults, frequently harboring the EWS/FLI chromosomal translocation. The resulting fusion protein is an aberrant transcription factor that uses highly repetitive GGAA-containing elements (microsatellites) to activate and repress thousands of target genes mediating oncogenesis. However, the mechanisms of EWS/FLI interaction with microsatellites and regulation of target gene expression is not clearly understood. Here, we profile genome-wide protein binding and gene expression. Using a combination of unbiased genome-wide computational and experimental analysis, we define GGAA-microsatellites in a Ewing sarcoma context. We identify two distinct classes of GGAA-microsatellites and demonstrate that EWS/FLI responsiveness is dependent on microsatellite length. At close range "promoter-like" microsatellites, EWS/FLI binding and subsequent target gene activation is highly dependent on number of GGAA-motifs. "Enhancer-like" microsatellites demonstrate length-dependent EWS/FLI binding, but minimal correlation for activated and none for repressed targets. Our data suggest EWS/FLI binds to "promoter-like" and "enhancer-like" microsatellites to mediate activation and repression of target genes through different regulatory mechanisms. Such characterization contributes valuable insight to EWS/FLI transcription factor biology and clarifies the role of GGAA-microsatellites on a global genomic scale. This may provide unique perspective on the role of non-coding DNA in cancer susceptibility and therapeutic development.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Repeticiones de Microsatélite/genética , Proteínas de Fusión Oncogénica/genética , Proteína Proto-Oncogénica c-fli-1/genética , Proteína EWS de Unión a ARN/genética , Sarcoma de Ewing/genética , Línea Celular Tumoral , Elementos de Facilitación Genéticos , Humanos , Regiones Promotoras Genéticas
17.
Proc Natl Acad Sci U S A ; 114(37): 9870-9875, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28847958

RESUMEN

Ewing sarcoma usually expresses the EWS/FLI fusion transcription factor oncoprotein. EWS/FLI regulates myriad genes required for Ewing sarcoma development. EWS/FLI binds GGAA-microsatellite sequences in vivo and in vitro. These sequences provide EWS/FLI-mediated activation to reporter constructs, suggesting that they function as EWS/FLI-response elements. We now demonstrate the critical role of an EWS/FLI-bound GGAA-microsatellite in regulation of the NR0B1 gene as well as for Ewing sarcoma proliferation and anchorage-independent growth. Clinically, genomic GGAA-microsatellites are highly variable and polymorphic. Current data suggest that there is an optimal "sweet-spot" GGAA-microsatellite length (of 18-26 GGAA repeats) that confers maximal EWS/FLI-responsiveness to target genes, but the mechanistic basis for this remains unknown. Our biochemical studies, using recombinant Δ22 (a version of EWS/FLI containing only the FLI portion), demonstrate a stoichiometry of one Δ22-monomer binding to every two consecutive GGAA-repeats on shorter microsatellite sequences. Surprisingly, the affinity for Δ22 binding to GGAA-microsatellites significantly decreased, and ultimately became unmeasureable, when the size of the microsatellite was increased to the sweet-spot length. In contrast, a fully functional EWS/FLI mutant (Mut9, which retains approximately half of the EWS portion of the fusion) showed low affinity for smaller GGAA-microsatellites but instead significantly increased its affinity at sweet-spot microsatellite lengths. Single-gene ChIP and genome-wide ChIP-sequencing (ChIP-seq) and RNA-seq studies extended these findings to the in vivo setting. Together, these data demonstrate the critical requirement of GGAA-microsatellites as EWS/FLI activating response elements in vivo and reveal an unexpected role for the EWS portion of the EWS/FLI fusion in binding to sweet-spot GGAA-microsatellites.


Asunto(s)
Receptor Nuclear Huérfano DAX-1/genética , Proteínas de Unión al ADN/genética , Proteínas de Microfilamentos/genética , Repeticiones de Microsatélite/genética , Proteína EWS de Unión a ARN/genética , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Recombinantes de Fusión/genética , Sarcoma de Ewing/genética , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Proteínas de Microfilamentos/metabolismo , Dominios Proteicos/genética , Proteína EWS de Unión a ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Elementos de Respuesta/genética , Sarcoma de Ewing/metabolismo , Transactivadores
18.
Oncotarget ; 7(52): 86457-86468, 2016 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-27833082

RESUMEN

BACKGROUND: Genome-wide miRNA expression may be useful for predicting breast cancer risk and/or for the early detection of breast cancer. RESULTS: A 41-miRNA model distinguished breast cancer risk in the discovery study (accuracy of 83.3%), which was replicated in the independent study (accuracy = 63.4%, P=0.09). Among the 41 miRNA, 20 miRNAs were detectable in serum, and predicted breast cancer occurrence within 18 months of blood draw (accuracy 53%, P=0.06). These risk-related miRNAs were enriched for HER-2 and estrogen-dependent breast cancer signaling. MATERIALS AND METHODS: MiRNAs were assessed in two cross-sectional studies of women without breast cancer and a nested case-control study of breast cancer. Using breast tissues, a multivariate analysis was used to model women with high and low breast cancer risk (based upon Gail risk model) in a discovery study of women without breast cancer (n=90), and applied to an independent replication study (n=71). The model was then assessed using serum samples from the nested case-control study (n=410). CONCLUSIONS: Studying breast tissues of women without breast cancer revealed miRNAs correlated with breast cancer risk, which were then found to be altered in the serum of women who later developed breast cancer. These results serve as proof-of-principle that miRNAs in women without breast cancer may be useful for predicting breast cancer risk and/or as an adjunct for breast cancer early detection. The miRNAs identified herein may be involved in breast carcinogenic pathways because they were first identified in the breast tissues of healthy women.


Asunto(s)
Neoplasias de la Mama/genética , MicroARNs/fisiología , Adulto , Anciano , Neoplasias de la Mama/etiología , Estudios de Casos y Controles , Estudios Transversales , Femenino , Perfilación de la Expresión Génica , Humanos , MicroARNs/análisis , Persona de Mediana Edad , Riesgo
19.
Carcinogenesis ; 37(5): 471-480, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26961134

RESUMEN

Single nucleotide polymorphisms (SNPs) in one-carbon metabolism genes and lifestyle factors (alcohol drinking and breast folate) may be determinants of whole-genome methylation in the breast. DNA methylation profiling was performed using the Illumina Infinium HumanMethylation450 BeadChip in 81 normal breast tissues from women undergoing reduction mammoplasty and no history of cancer. ANCOVA, adjusting for age, race and BMI, was used to identify differentially-methylated (DM) CpGs. Gene expression, by the Affymetrix GeneChip Human Transcriptome Array 2.0, was correlated with DM. Biological networks of DM genes were assigned using Ingenuity Pathway Analysis. Fifty-seven CpG sites were DM in association with eight SNPs in FTHFD, MTHFD1, MTHFR, MTR, MTRR, and TYMS (P <5.0 x 10-5); 56% of the DM CpGs were associated with FTHFD SNPs, including DM within FTHFD. Gene expression was negatively correlated with FTHFD methylation (r=-0.25, P=0.017). Four DM CpGs identified by SNPs in MTRR, MTHFR, and FTHFD were significantly associated with alcohol consumption and/or breast folate. The top biological network of DM CpGs was associated with Energy Production, Molecular Transportation, and Nucleic Acid Metabolism. This is the first comprehensive study of the association between SNPs in one-carbon metabolism genes and genome-wide DNA methylation in normal breast tissues. These SNPs, especially FTHFD, as well as alcohol intake and folate exposure, appear to affect DM in breast tissues of healthy women. The finding that SNPs in FTHFD and MTR are associated with their own methylation is novel and highlights a role for these SNPs as cis-methylation quantitative trait loci.

20.
Mol Carcinog ; 55(10): 1424-37, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26294040

RESUMEN

The number of validated biomarkers of tobacco smoke exposure is limited, and none exist for tobacco-related cancer. Additional biomarkers for smoke, effects on cellular systems in vivo are needed to improve early detection of lung cancer, and to assist the Food and Drug Administration in regulating exposures to tobacco products. We assessed the effects of smoking on the gene expression using human cell cultures and blood from a cross-sectional study. We profiled global transcriptional changes in cultured smokers' peripheral blood mononuclear cells (PBMCs) treated with cigarette smoke condensate (CSC) in vitro (n = 7) and from well-characterized smokers' blood (n = 36). ANOVA with adjustment for covariates and Pearson correlation were used for statistical analysis in this study. CSC in vitro altered the expression of 1 178 genes (177 genes with > 1.5-fold-change) at P < 0.05. In vivo, PBMCs of heavy and light smokers differed for 614 genes (29 with > 1.5-fold-change) at P < 0.05 (309 remaining significant after adjustment for age, race, and gender). Forty-one genes were persistently altered both in vitro and in vivo, 22 having the same expression pattern reported for non-small cell lung cancer. Our data provides evidence that persistent alterations of gene expression in vitro and in vivo may relate to carcinogenic effects of cigarette smoke, and the identified genes may serve as potential biomarkers for cancer. The use of an in vitro model to corroborate results from human studies provides a novel way to understand human exposure and effect. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Perfilación de la Expresión Génica/métodos , Neoplasias Pulmonares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Fumar/genética , Células Cultivadas , Estudios Transversales , ADN/sangre , Detección Precoz del Cáncer , Femenino , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Humo/efectos adversos , Nicotiana/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA