Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 548, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177236

RESUMEN

In this work we study in-depth the antireflection and filtering properties of ultrathin-metal-film-based transparent electrodes (MTEs) integrated in thin-film solar cells. Based on numerical optimization of the MTE design and the experimental characterization of thin-film perovskite solar cell (PSC) samples, we show that reflection in the visible spectrum can be strongly suppressed, in contrast to common belief (due to the compact metal layer). The optical loss of the optimized electrode (~ 2.9%), composed of a low-resistivity metal and an insulator, is significantly lower than that of a conventional transparent conductive oxide (TCO ~ 6.3%), thanks to the very high transmission of visible light within the cell (> 91%) and low thickness (< 70 nm), whereas the reflection of infrared light (~ 70%) improves by > 370%. To assess the application potentials, integrated current density > 25 mA/cm2, power conversion efficiency > 20%, combined with vastly reduced device heat load by 177.1 W/m2 was achieved in state-of-the-art PSCs. Our study aims to set the basis for a novel interpretation of composite electrodes/structures, such as TCO-metal-TCO, dielectric-metal-dielectric or insulator-metal-insulator, and hyperbolic metamaterials, in high-efficiency optoelectronic devices, such as solar cells, semi-transparent, and concentrated systems, and other electro-optical components including smart windows, light-emitting diodes, and displays.

2.
Sci Rep ; 13(1): 21986, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081893

RESUMEN

Nonreciprocity is a highly desirable feature in photonic media since it allows for control over the traveling electromagnetic waves, in a way that goes far beyond ordinary filtering. One of the most conventional ways to achieve nonreciprocity is via employing gyrotropic materials; however, their time-reversal-symmetry-breaking effects are very weak and, hence, large, bulky setups combined with very strong magnetic biases are required for technologically useful devices. In this work, artificial heterostructures are introduced to enhance the effective nonreciprocal behavior by reducing the contribution of the diagonal susceptibilities in the collective response; in this way, the off-diagonal ones, that are responsible for nonreciprocity, seem bigger. In particular, alternating gyrotropic and metallic or plasmonic films make an epsilon-near-zero (ENZ) effective-medium by averaging the diagonal permittivities of opposite sign, representing the consecutive layers. The homogenization process leaves unaltered the nonzero off-diagonal permittivities of the original gyrotropic substance, which become dominant and ignite strong nonreciprocal response. Realistic material examples that could be implemented experimentally in the mid-infrared spectrum are provided while the robustness of the enhanced nonreciprocity in the presence of actual media losses is discussed and bandwidth limitations due to the unavoidable frequency dispersion are elaborated. The proposed concept can be extensively utilized in designing optical devices that serve a wide range of applications from signal isolation and wave circulation to unidirectional propagation and asymmetric power amplification.

3.
Micromachines (Basel) ; 14(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36838168

RESUMEN

A conductive meta-atom of toroidal topology is studied both theoretically and experimentally, demonstrating a sharp and highly controllable resonant response. Simulations are performed both for a free-space periodic metasurface and a pair of meta-atoms inserted within a rectangular metallic waveguide. A quasi-dark state with controllable radiative coupling is supported, allowing to tune the linewidth (quality factor) and lineshape of the supported resonance via the appropriate geometric parameters. By conducting a rigorous multipole analysis, we find that despite the strong toroidal dipole moment, it is the residual electric dipole moment that dictates the electromagnetic response. Subsequently, the structure is fabricated with 3D printing and coated with silver paste. Importantly, the structure is planar, consists of a single metallization layer and does not require a substrate when neighboring meta-atoms are touching, resulting in a practical, thin and potentially low-loss system. Measurements are performed in the 5 GHz regime with a vector network analyzer and a good agreement with simulations is demonstrated.

4.
Sci Rep ; 12(1): 19769, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396673

RESUMEN

We present polarization-sensitive gap surface plasmon metasurfaces fabricated with direct material processing using pulsed laser light, an alternative and versatile approach. In particular we imprint laser induced periodic surface structures on nanometer-thick Ni films, which are back-plated by a grounded dielectric layer with TiO2 and ZnO deposition followed by Au evaporation. The procedure results in a metal-insulator-metal type plasmonic metasurface with a corrugated top layer consisting of highly-ordered, sinusoidal shaped, periodic, thin, metallic nanowires. The metasurface sustains sharp, resonant gap surface plasmons and provides various opportunities for polarization control in reflection, which is here switched by the size and infiltrating material of the insulating cavity. The polarization control is associated with the polarization sensitive perfect absorption and leads to high extinction ratios in the near-IR and mid-IR spectral areas. Corresponding Fourier-transform infrared spectroscopy measurements experimentally demonstrate that the fabrication approach produces metasurfaces with very well-defined, controllable, sharp resonances and polarization sensitive resonant absorption response which, depending on the insulating cavity size, impacts either the normal or the parallel to the nanowires polarization.

5.
Sci Rep ; 11(1): 11552, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34079009

RESUMEN

Outdoor devices comprising materials with mid-IR emissions at the atmospheric window (8-13 µm) achieve passive heat dissipation to outer space (~ - 270 °C), besides the atmosphere, being suitable for cooling applications. Recent studies have shown that the micro-scale photonic patterning of such materials further enhances their spectral emissivity. This approach is crucial, especially for daytime operation, where solar radiation often increases the device heat load. However, micro-scale patterning is often sub-optimal for other wavelengths besides 8-13 µm, limiting the devices' efficiency. Here, we show that the superposition of properly designed in-plane nano- and micro-scaled periodic patterns results in enhanced device performance in the case of solar cell applications. We apply this idea in scalable, few-micron-thick, and simple single-material (glass) radiative coolers on top of simple-planar Si substrates, where we show an ~ 25.4% solar absorption enhancement, combined with a ~ ≤ 5.8 °C temperature reduction. Utilizing a coupled opto-electro-thermal modeling we evaluate our nano-micro-scale cooler also in the case of selected, highly-efficient Si-based photovoltaic architectures, where we achieve an efficiency enhancement of ~ 3.1%, which is 2.3 times higher compared to common anti-reflection layers, while the operating temperature of the device also decreases. Besides the enhanced performance of our nano-micro-scale cooler, our approach of superimposing double- or multi-periodic gratings is generic and suitable in all cases where the performance of a device depends on its response on more than one frequency bands.

6.
Materials (Basel) ; 13(17)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887426

RESUMEN

In this work we present a method for fabricating three dimensional, ultralight and flexible millimeter metamaterial units using a commercial household 3D printer. The method is low-cost, fast, eco-friendly and accessible. In particular, we use the Fused Deposition Modeling 3D printing technique and we fabricate flexible conductive Spilt Ring Resonators (SRRs) in a free-standing form. We characterized the samples experimentally through measurements of their spectral transmission, using standard rectangular microwave waveguides. Our findings show that the resonators produce well defined resonant electromagnetic features that depend on the structural details and the infiltrating dielectric materials, indicating that the thin, flexible and light 3D printed structures may be used as electromagnetic microwave components and electromagnetic fabrics for coating a variety of devices and infrastructure units, while adapting to different shapes and sizes.

7.
Opt Express ; 28(13): 18548-18565, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32672154

RESUMEN

The radiative cooling of objects during daytime under direct sunlight has recently been shown to be significantly enhanced by utilizing nanophotonic coatings. Multilayer thin film stacks, 2D photonic crystals, etc. as coating structures improved the thermal emission rate of a device in the infrared atmospheric transparency window reducing considerably devices' temperature. Due to the increased heating in photovoltaic (PV) devices - that has significant adverse consequences on both their efficiency and life-time - and inspired by the recent advances in daytime radiative cooling, we developed a coupled thermal-electrical modeling to examine the physical mechanisms on how a radiative cooler affects the overall efficiency of commercial photovoltaic modules and how the radiative cooling impact is compared with the impact of other photonic strategies for reducing heat generation within PVs, such as ultraviolet and sub-bandgap reflection. Employing our modeling, which takes into account all the major intrinsic processes affected by the temperature variation in a PV device, we additionally identified the validity regimes of the currently existing PV-cooling models which treat the PV coolers as simple thermal emitters. Finally, we assessed some realistic photonic coolers from the literature, compatible with photovoltaics, to implement the radiative cooling requirements and the requirements related to the reduction of heat generation, and demonstrated their associated impact on the temperature reduction and PV efficiency. Consistent with previous works, we showed that combining radiative cooling with sub-bandgap reflection proves to be more promising for increasing PVs' efficiency. Providing the physical mechanisms and requirements for reducing PV operating temperature, our study provides guidelines for utilizing suitable photonic structures for enhancing the efficiency and the lifetime of PV devices.

8.
ACS Photonics ; 6(3): 720-727, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30918912

RESUMEN

We present an experimental demonstration and interpretation of an ultrafast optically tunable, graphene-based thin film absorption modulator for operation in the THz regime. The graphene-based component consists of a uniform CVD-grown graphene sheet stacked on an SU-8 dielectric substrate that is grounded by a metallic ground plate. The structure shows enhanced absorption originating from constructive interference of the impinging and reflected waves at the absorbing graphene sheet. The modulation of this absorption, which is demonstrated via a THz time-domain spectroscopy setup, is achieved by applying an optical pump signal, which modifies the conductivity of the graphene sheet. We report an ultrafast (on the order of few ps) absorption modulation on the order of 40% upon photoexcitation. Our results provide evidence that the optical pump excitation results in the degradation of the graphene THz conductivity, which is connected with the generation of hot carriers, the increase of the electronic temperature, and the dominant increase of the scattering rate over the carrier concentration as found in highly doped samples.

9.
Adv Opt Mater ; 6(22): 1800633, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30800617

RESUMEN

A novel approach for reconfigurable wavefront manipulation with gradient metasurfaces based on permittivity-modulated elliptic dielectric rods is proposed. It is shown that the required 2π phase span in the local electromagnetic response of the metasurface can be achieved by pairing the lowest magnetic dipole Mie resonance with a toroidal dipole Mie resonance, instead of using the lowest two Mie resonances corresponding to fundamental electric and magnetic dipole resonances as customarily exercised. This approach allows for the precise matching of both the resonance frequencies and quality factors. Moreover, the accurate matching is preserved if the rod permittivity is varied, allowing for constructing reconfigurable gradient metasurfaces by locally modulating the permittivity in each rod. Highly efficient tunable beam steering and beam focusing with ultrashort focal lengths are numerically demonstrated, highlighting the advantage of the low-profile metasurfaces over bulky conventional lenses. Notably, despite using a matched pair of Mie resonances, the presence of an electric polarizability background allows to perform the wavefront shaping operations in reflection, rather than transmission. This has the advantage that any control circuitry necessary in an experimental realization can be accommodated behind the metasurface without affecting the electromagnetic response.

10.
ACS Photonics ; 4(11): 2782-2788, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29541653

RESUMEN

We present the design of a dielectric inverse photonic crystal structure that couples line-defect waveguide propagating modes into highly directional beams of controllable directionality. The structure utilizes a triangular lattice made of air holes drilled in an infinitely thick Si slab, and it is designed for operation in the near-infrared and optical regime. The structure operation is based on the excitation and manipulation of dark dielectric surface states, in particular on the tailoring of the dark states' coupling to outgoing radiation. This coupling is achieved with the use of properly designed external corrugations. The structure adapts and matches modes that travel through the photonic crystal and the free space. Moreover it facilitates the steering of the outgoing waves, is found to generate well-defined, spatially and spectrally isolated beams, and may serve as a frequency splitting component designed for operation in the near-infrared regime and in particular the telecom optical wavelength band. The design complies with the state-of-the-art Si nanofabrication technology and can be directly scaled for operation in the optical regime.

11.
Opt Express ; 23(11): 13972-82, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072766

RESUMEN

We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. The angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.

12.
Opt Express ; 22(19): 23147-52, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25321784

RESUMEN

We demonstrate both experimentally and theoretically that a two-layer dielectric structure can provide collimation and enhanced transmission of a Gaussian beam passing through it. This is due to formation of surface localized states along the layered structure and the coupling of these states to outgoing propagating waves. A system of multiple cascading two-layers can sustain the beaming for large propagation distances.


Asunto(s)
Simulación por Computador , Conductividad Eléctrica , Sistemas Microelectromecánicos/métodos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...