Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Protoplasma ; 261(3): 581-592, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38191719

RESUMEN

Overdoses of pesticides lead to a decrease in the yield and quality of plants, such as beans. The unconscious use of deltamethrin, one of the synthetic insecticides, increases the amount of reactive oxygen species (ROS) by causing oxidative stress in plants. In this case, plants tolerate stress by activating the antioxidant defense mechanism and many genes. 5-Aminolevulinic acid (ALA) improves tolerance to stress by acting exogenously in low doses. There are many gene families that are effective in the regulation of this mechanism. In addition, one of the response mechanisms at the molecular level against environmental stressors in plants is retrotransposon movement. In this study, the expression levels of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), and stress-associated protein (SAP) genes were determined by Q-PCR in deltamethrin (0.5 ppm) and various doses (20, 40, and 80 mg/l) of ALA-treated bean seedlings. In addition, one of the response mechanisms at the molecular level against environmental stressors in plants is retrotransposon movement. It was determined that deltamethrin increased the expression of SOD (1.8-fold), GPX (1.4-fold), CAT (2.7-fold), and SAP (2.5-fold) genes, while 20 and 40 mg/l ALA gradually increased the expression of these genes at levels close to control, but 80 mg/l ALA increased the expression of these genes almost to the same level as deltamethrin (2.1-fold, 1.4-fold, 2.6-fold, and 2.6-fold in SOD, GPX, CAT, and SAP genes, respectively). In addition, retrotransposon-microsatellite amplified polymorphism (REMAP) was performed to determine the polymorphism caused by retrotransposon movements. While deltamethrin treatment has caused a decrease in genomic template stability (GTS) (27%), ALA treatments have prevented this decline. At doses of 20, 40, and 80 mg/L of ALA treatments, the GTS ratios were determined to be 96.8%, 74.6%, and 58.7%, respectively. Collectively, these findings demonstrated that ALA has the utility of alleviating pesticide stress effects on beans.


Asunto(s)
Ácido Aminolevulínico , Nitrilos , Plaguicidas , Piretrinas , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/metabolismo , Plantones/metabolismo , Retroelementos/genética , Plaguicidas/metabolismo , Plaguicidas/farmacología , Antioxidantes/metabolismo , Catalasa/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Expresión Génica , Glutatión/metabolismo , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo
2.
Planta ; 258(3): 55, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37522927

RESUMEN

MAIN CONCLUSION: This review provides a comprehensive overview of the CRISPR/Cas9 technique and the research areas of this gene editing tool in improving wheat quality. Wheat (Triticum aestivum L.), the basic nutrition for most of the human population, contributes 20% of the daily energy needed because of its, carbohydrate, essential amino acids, minerals, protein, and vitamin content. Wheat varieties that produce high yields and have enhanced nutritional quality will be required to fulfill future demands. Hexaploid wheat has A, B, and D genomes and includes three like but not identical copies of genes that influence important yield and quality. CRISPR/Cas9, which allows multiplex genome editing provides major opportunities in genome editing studies of plants, especially complicated genomes such as wheat. In this overview, we discuss the CRISPR/Cas9 technique, which is credited with bringing about a paradigm shift in genome editing studies. We also provide a summary of recent research utilizing CRISPR/Cas9 to investigate yield, quality, resistance to biotic/abiotic stress, and hybrid seed production. In addition, we provide a synopsis of the laboratory experience-based solution alternatives as well as the potential obstacles for wheat CRISPR studies. Although wheat's extensive genome and complicated polyploid structure previously slowed wheat genetic engineering and breeding progress, effective CRISPR/Cas9 systems are now successfully used to boost wheat development.


Asunto(s)
Pan , Triticum , Humanos , Triticum/genética , Sistemas CRISPR-Cas/genética , Fitomejoramiento , Edición Génica
3.
Environ Sci Pollut Res Int ; 30(38): 89012-89021, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37452252

RESUMEN

The source of energy for all photoautotrophic organisms is light, which is absorbed by photosynthetic processes and used to transform carbon dioxide and H2O into organic molecules. The majority of UV-B light (280 to 320 nm) is absorbed by stratospheric ozone layer, although some of it does reach at the Earth's surface. Because of the sedentary lifestyle of plants, this form of abiotic stress is unavoidable and can induce growth and even cell death. Ten-day-old calli generated from mature Kirik wheat embryos were subjected to UV-B radiation for 0, 2, 4, and 6 h to examine the function of exogenous α-tocopherol, a lipophilic antioxidant, in wheat tolerance to UV-B radiation stress. The calli were then moved to a callus medium containing α-tocopherol (0, 50, and 100 mg/l) and cultivated there for 20 days after being subjected to UV-B stress. For plant regeneration, embryogenic calli were put on a medium for plant regeneration after 30 days. The findings of this investigation demonstrated that an increase in UV-B exposure period resulted in a substantial drop in the relative growth rate of callus, the rate of embryogenic callus, the rate of responding embryogenic callus, and the number of plants in each explant. On the other hand, with the application of α-tocopherol, all these parameters improved, and the best result was observed in the application of 100 mg/l of α-tocopherol in terms of plant regeneration under UV-B stress.


Asunto(s)
Triticum , alfa-Tocoferol , alfa-Tocoferol/farmacología , Triticum/metabolismo , Pan , Antioxidantes/metabolismo
4.
Physiol Mol Biol Plants ; 29(11): 1733-1754, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38162914

RESUMEN

The two-component system (TCS) generally consists of three elements, namely the histidine kinase (HK), response regulator (RR), and histidine phosphotransfer (HP) gene families. This study aimed to assess the expression of TCS genes in P. vulgaris leaf tissue under salt and drought stress and perform a genome-wide analysis of TCS gene family members using bioinformatics methods. This study identified 67 PvTCS genes, including 10 PvHP, 38 PvRR, and 19 PvHK, in the bean genome. PvHK2 had the maximum number of amino acids with 1261, whilst PvHP8 had the lowest number with 87. In addition, their theoretical isoelectric points were between 4.56 (PvHP8) and 9.15 (PvPRR10). The majority of PvTCS genes are unstable. Phylogenetic analysis of TCS genes in A. thaliana, G. max, and bean found that PvTCS genes had close phylogenetic relationships with the genes of other plants. Segmental and tandem duplicate gene pairs were detected among the TCS genes and TCS genes have been subjected to purifying selection pressure in the evolutionary process. Furthermore, the TCS gene family, which has an important role in abiotic stress and hormonal responses in plants, was characterized for the first time in beans, and its expression of TCS genes in bean leaves under salt and drought stress was established using RNAseq and qRT-PCR analyses. The findings of this study will aid future functional and genomic studies by providing essential information about the members of the TCS gene family in beans. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01406-5.

5.
Biol Futur ; 71(1-2): 123-130, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34554519

RESUMEN

Retrotransposon activity and genomic template stability (GTS) are one of the most significant rearranging mechanisms in environmental stress. Therefore, in this study, it is aimed to elucidate effecting of Cobalt (Co) on the instability of genomes and Long Terminal Repeat retrotransposon polymorphism in Zea mays and whether humic acid (HA) has any role on these parameters. For this purpose, Retrotransposon-microsatellite amplified polymorphism (REMAP) and Inter-Retrotransposon Amplified Polymorphism (IRAP) markers were applied to evaluate retrotransposon polymorphism and the GTS levels. It was found that IRAP and REMAP primers generate unique polymorphic band structures on maize plants treated with various doses of Co. Retrotransposon polymorphism increased and GTS decreased while increasing Co concentration. On the other hand, there was a reduction in negative effects of Co on retrotransposon GTS and polymorphism after treatment with HA. The results indicate that HA may be used effectively for the protection of maize seedlings from the destructive effects of Co toxicity.


Asunto(s)
Cobalto/toxicidad , Genoma de Planta , Sustancias Húmicas , Polimorfismo Genético/efectos de los fármacos , Zea mays/efectos de los fármacos , Zea mays/genética , Cobalto/administración & dosificación , Relación Dosis-Respuesta a Droga , Retroelementos
6.
Environ Sci Pollut Res Int ; 24(29): 22948-22953, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28819832

RESUMEN

Picloram (4-amino-3,5,6-trichloropicolinic acid) is a liquid auxinic herbicide used to control broad-leaved weeds. Picloram is representing a possible hazard to ecosystems and human health. Therefore, in this study, DNA methylation changes and DNA damage levels in Phaseolus vulgaris exposed to picloram, as well as whether humic acid (HA) has preventive effects on these changes were investigated. Random amplified polymorphic DNA (RAPD) techniques were used for identification of DNA damage and coupled restriction enzyme digestion-random amplification (CRED-RA) techniques were used to detect the changed pattern of DNA methylation. According to the obtained results, picloram (5, 10, 20, and 40 mg/l) caused DNA damage profile changes (RAPDs) increasing, DNA hypomethylation and genomic template stability (GTS) decreasing. On the other hand, different concentrations of applied HA (2, 4, 6, 8, and 10%) reduced hazardous effects of picloram. The results of the experiment have explicitly indicated that HAs could be an alternative for reducing genetic damage in plants. In addition to the alleviate effects of humic acid on genetic damage, its epigenetic effect is hypomethylation.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Herbicidas/toxicidad , Sustancias Húmicas/análisis , Phaseolus/efectos de los fármacos , Picloram/toxicidad , Daño del ADN , Relación Dosis-Respuesta a Droga , Modelos Teóricos , Phaseolus/genética , Técnica del ADN Polimorfo Amplificado Aleatorio
7.
Plant Physiol Biochem ; 118: 267-273, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28666233

RESUMEN

Deltamethrin, synthetic type II pyrethroid, is one of the most widely used pesticide in agriculture. Intense use of deltamethrin can cause permanant or temporary damages in nontarget plant species. In this study, we aimed to determine DNA methylation change and DNA damage level in Phaseolus vulgaris seedlings subjected to different concentrations of deltamethrin (0.02, 0.1 and 0.5 ppm). Coupled Restriction Enzyme Digestion-Random Amplification (CRED-RA) was performed to analyze the changes of DNA methylation as well as Randomly Amplified Polymorphic DNA (RAPD) was used for genotoxic influences estimation and genomic stability. The results showed that deltamethrin caused to increase in RAPD profile changes (DNA damage) and reduce in Genomic Template Stability (GTS). GTS declined markedly in relation to increasing concentration of deltamethrin applied. The lowest GTS value (71.4%) observed in 0.5 ppm deltamethrin treatment. Also, DNA hypermethylation was occurred in all treatments. Moreover, alleviative effect of 5-aminolevulinic acid (ALA) (20, 40 and 80 mg/l), one of the plant growth regulators, was tested against the 0.5 ppm deltamethrin. Adverse effects of deltamethrin on GTS decreased after ALA treatments, especially 20 mg/l concentration. As a result, we concluded that ALA has a strong anti-genotoxic agent against deltamethrin and it could be an alternative chemical to reduce genetic damage in plants under deltamethrin stress conditions.


Asunto(s)
Ácido Aminolevulínico/farmacocinética , Daño del ADN , Metilación de ADN/efectos de los fármacos , ADN de Plantas/metabolismo , Fabaceae/metabolismo , Nitrilos/farmacología , Piretrinas/farmacología , Plantones/metabolismo
8.
Bioelectromagnetics ; 37(7): 504-11, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27513309

RESUMEN

Deoxyribonucleic acid (DNA) is always damaged by endogenous and exogenous factors. Magnetic field (MF) is one of these exogenous factors. When repair mechanisms are not sufficient, mainly because of imbalance in damage or mistakes in repair mechanisms, methylation of DNA results in polymorphism-related abnormalities. In this study, low intensity static magnetic field-induced DNA damage and methylation in wheat calli were investigated by using Random Amplified Polymorphic DNA and Coupled Restriction Enzyme Digestion-Random Amplification techniques. Calli were derived from mature embryos of wheat. Both 7- and 14-day-old wheat calli were exposed to 7 mT (millitesla) static MF for 24, 48, 72, 96, or 120 h of incubation period. The highest change in polymorphism rate was obtained in calli exposed to 7 mT MF for 120 h in both 7- and 14-day-old calli. Increase in MF duration caused DNA hypermethylation in both 7- and 14-day-old calli. Polymorphism and DNA methylation ratio were higher in 7-day-old calli. The highest methylation level with a value of 25.1% was found in 7-day-old calli exposed to MF for 120 h. Results suggested that low intensity static magnetic field may trigger genomic instability and DNA methylation. Bioelectromagnetics. 37:504-511, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Epigénesis Genética , Campos Magnéticos , Triticum/genética , Metilación de ADN , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...