Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2402608, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934905

RESUMEN

Achieving precise estimates of battery cycle life is a formidable challenge due to the nonlinear nature of battery degradation. This study explores an approach using machine learning (ML) methods to predict the cycle life of lithium-metal-based rechargeable batteries with high mass loading LiNi0.8Mn0.1Co0.1O2 electrode, which exhibits more complicated and electrochemical profile during battery operating conditions than typically studied LiFePO4/graphite based rechargeable batteries. Extracting diverse features from discharge, charge, and relaxation processes, the intricacies of cell behavior without relying on specific degradation mechanisms are navigated. The best-performing ML model, after feature selection, achieves an R2 of 0.89, showcasing the application of ML in accurately forecasting cycle life. Feature importance analysis unveils the logarithm of the minimum value of discharge capacity difference between 100 and 10 cycle (Log(|min(ΔDQ 100-10(V))|)) as the most important feature. Despite the inherent challenges, this model demonstrates a remarkable 6.6% test error on unseen data, underscoring its robustness and potential for transformative advancements in battery management systems. This study contributes to the successful application of ML in the realm of cycle life prediction for lithium-metal-based rechargeable batteries with practically high energy density design.

2.
ACS Appl Mater Interfaces ; 15(46): 53614-53622, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944111

RESUMEN

Cathode degradation of Li-ion batteries (Li+) continues to be a crucial issue for higher energy density. A main cause of this degradation is strain due to stress induced by structural changes according to the state-of-charge (SOC). Moreover, in solid-state batteries, a mismatch between incompatible cathode/electrolyte interfaces also generates a strain effect. In this respect, understanding the effects of the mechanical/elastic phenomena associated with SOC on the cathode performance, such as voltage and Li+ diffusion, is essential. In this work, we focused on LiCoO2 (LCO), a representative LIB cathode material, and investigated the effects of biaxial strain and hydrostatic pressure on its layered structure and Li+ transport properties through first-principles calculations. With the nudged elastic band technique and molecular dynamics, we demonstrated that in Li-deficient LCO, compressive biaxial strain increases the Li+ diffusivity, whereas tensile biaxial strain and hydrostatic pressure tend to suppress it. Structural parameter analysis revealed the key correlation of "Co layer distances" with Li+ diffusion instead of "Li layer distances", as ordinarily expected. Structural analysis further revealed the interplay between the Li-Li Coulomb interaction, SOC, and Li+ diffusion in LCO. The activation volume of LCO under hydrostatic pressure was reported for the first time. Moreover, vacancy formation energy calculations showed that the Li intercalation potential could be decreased under compressive biaxial strain due to the weakening of the Li-O bond interaction. The present findings may serve to improve the control of the energy density performance of layered cathode materials.

3.
J Phys Chem A ; 127(27): 5734-5744, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37381735

RESUMEN

Data-driven materials design of ionic solid solutions often requires sampling (meta)stable site arrangements among the massive number of possibilities, which has been hampered by the lack of relevant methods. Herein, we develop a quick high-throughput sampling application for site arrangements of ionic solid solutions. Given the Ewald Coulombic energies for an initial site arrangement, EwaldSolidSolution updates the modified parts of the energy with varying sites only, which can be exhaustively estimated by using massively parallel processing. Given two representative examples of solid electrolytes, Li10GeP2S12 and Na3Zr2Si2PO12, EwaldSolidSolution successfully calculates the Ewald Coulombic energies of 211,266,225 (235,702,467) site arrangements for Li10GeP2S12 (Na3Zr2Si2PO12) with 216 (160) ion sites per unit cell in 1223.2 (1187.9) seconds: 0.0057898 (0.0050397) milliseconds per site arrangement. The computational cost is enormously saved in comparison with an existing application, which estimates the energy of a site arrangement on the second timescale. The positive correlations between the Ewald Coulombic energies and those estimated by density functional theory calculations show that (meta)stable samples are easily revealed by our computationally inexpensive algorithm. We also reveal that the different-valence nearest-neighbor pairs are distinctively formed in the low-energy site arrangements. EwaldSolidSolution will boost the materials design of ionic solid solutions by attracting broad interest.

4.
ACS Omega ; 7(30): 26107-26115, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35936417

RESUMEN

The catalytic electrochemical synthesis of NH3 on Ru/BaCeO3 was investigated using density functional theory. The competition between NH3 formation and the hydrogen evolution reaction (HER) is a key for a high NH3 formation rate. Our calculations show that H adsorbs more strongly than N2 at the Ru particle moiety, while the adsorption of N2 is stronger than the H adsorption at the Ru/BaCeO3 perimeter, a model for the triple-phase boundary that is proposed to be an active site by experimental studies. This indicates that, while the HER is more favorable at the Ru particle moiety, it should be suppressed at the Ru/BaCeO3 perimeter. We also calculated the Gibbs free energy changes along the NH3 formation and found that the N2H formation, the NHNH2 formation, and the NH3 formation steps have a relatively large Gibbs energy change. Therefore, these are possible candidates for the potential-determining step. The calculated equilibrium potential (U = -0.70 V, vs RHE) is in reasonable agreement with experiments. We also evaluated the reaction energy (ΔE) and the activation barrier (E a) of the N2H formation at several sites. ΔE and E a were high at the Ru particle moiety (ΔE = 1.18 eV and E a = 1.38 eV) but became low (ΔE = 0.32 eV and E a = 1.31 eV) at the Ru/BaCeO3 perimeter. These provide the atomic-scale mechanism how the proton conduction in BaCeO3 assists the electrochemical NH3 synthesis.

5.
ACS Appl Mater Interfaces ; 14(32): 37009-37018, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35930401

RESUMEN

Lithium-rich manganese-based oxides (LRMO) are regarded as promising cathode materials for powering electric applications due to their high capacity (250 mAh g-1) and energy density (∼900 Wh kg-1). However, poor cycle stability and capacity fading have impeded the commercialization of this family of materials as battery components. Surface modification based on coating has proven successful in mitigating some of these problems, but a microscopic understanding of how such improvements are attained is still lacking, thus impeding systematic and rational design of LRMO-based cathodes. In this work, first-principles density functional theory (DFT) calculations are carried out to fill out such a knowledge gap and to propose a promising LRMO-coating material. It is found that SrTiO3 (STO), an archetypal and highly stable oxide perovskite, represents an excellent coating material for Li1.2Ni0.2Mn0.6O2 (LNMO), a prototypical member of the LRMO family. An accomplished atomistic model is constructed to theoretically estimate the structural, electronic, oxygen vacancy formation energy, and lithium-transport properties of the LNMO/STO interface system, thus providing insightful comparisons with the two integrating bulk materials. It is found that (i) electronic transport in the LNMO cathode is enhanced due to partial closure of the LNMO band gap (∼0.4 eV) and (ii) the lithium ions can easily diffuse near the LNMO/STO interface and within STO due to the small size of the involved ion-hopping energy barriers. Furthermore, the formation energy of oxygen vacancies notably increases close to the LNMO/STO interface, thus indicating a reduction in oxygen loss at the cathode surface and a potential inhibition of undesirable structural phase transitions. This theoretical work therefore opens up new routes for the practical improvement of cost-affordable lithium-rich cathode materials based on highly stable oxide perovskite coatings.

6.
Angew Chem Int Ed Engl ; 61(3): e202114697, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34826204

RESUMEN

On-surface chemical reaction has become a very powerful technique to synthesize nanostructures by linking small molecules in the bottom-up approach. Given the fact that most reactants are simultaneously activated at certain temperatures, a sequential reaction in a controlled way has remained challenging. Here, we present an on-surface synthesis of multi-block co-oligomers from trifluoromethyl (CF3 ) substituted porphyrin metal complexes. The oligomerization on Au(111) is demonstrated with a combination of bond-resolved scanning probe microscopy and density functional theory (DFT) calculations. Even after the first oligomerization of single monomer unit, the termini of the oligomer keep the CF3 group, which can be used as a reactant for further coupling in a sequential order. Consequently, copper, cobalt, and palladium complexes of bisanthracene-fused porphyrin oligomers were linked with each other in a designed order.

7.
Adv Mater ; 33(42): e2103250, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34487374

RESUMEN

Doped diamond electrodes have attracted significant attention for decades owing to their excellent physical and electrochemical properties. However, direct experimental observation of dopant effects on the diamond surface has not been available until now. Here, low-temperature scanning tunneling microscopy is utilized to investigate the atomic-scale morphology and electronic structures of (100)- and (111)-oriented boron-doped diamond (BDD) electrodes. Graphitized domains of a few nanometers are shown to manifest the effects of boron dopants on the BDD surface. Confirmed by first-principles calculations, local density of states measurements reveal that the electronic structure of these features is characterized by in-gap states induced by boron-related lattice deformation. The dopant-related graphitization is uniquely observed in BDD (111), which explains its electrochemical superiority over the (100) facet. These experimental observations provide atomic-scale information about the role of dopants in modulating the conductivity of diamond, as well as, possibly, other functional doped materials.

8.
Phys Chem Chem Phys ; 23(29): 15628-15634, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34264252

RESUMEN

Boron-doped diamond (BDD) has attracted much attention in semi-/superconductor physics and electrochemistry, where the surface structures and electronic states play crucial roles. Herein, we systematically examine the structural and electronic properties of the unterminated and H-terminated diamond(111) surfaces by using density functional theory calculations, and the effect of the boron position on them. The surface energy increases compared to that of the undoped case when the boron is located at a deeper position in the diamond bulk, which indicates that boron near the surface can facilitate the surface stability of the BDD in addition to the H-termination. Moreover, the surface energy and projected density of state analyses suggest that the boron can enhance the graphitization of the pristine (ideal) unterminated (111) surface thanks to the alternative sp2-sp3 arrangement on that surface. Finally, we found that surface electronic states depend on the boron's position, i.e., the Fermi energy (EF) is located around the mid-gap position when the boron lies near the surface, instead of showing a p-type semiconductor behavior where the EF lies closer to the valence band maximum.

9.
Adv Sci (Weinh) ; 8(11): e2004438, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34105285

RESUMEN

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) with unique electrical properties are fascinating materials used for future electronics. However, the strong Fermi level pinning effect at the interface of TMDCs and metal electrodes always leads to high contact resistance, which seriously hinders their application in 2D electronics. One effective way to overcome this is to use metallic TMDCs or transferred metal electrodes as van der Waals (vdW) contacts. Alternatively, using highly conductive doped TMDCs will have a profound impact on the contact engineering of 2D electronics. Here, a novel chemical vapor deposition (CVD) using mixed molten salts is established for vapor-liquid-solid growth of high-quality rhenium (Re) and vanadium (V) doped TMDC monolayers with high controllability and reproducibility. A tunable semiconductor to metal transition is observed in the Re- and V-doped TMDCs. Electrical conductivity increases up to a factor of 108 in the degenerate V-doped WS2 and WSe2 . Using V-doped WSe2 as vdW contact, the on-state current and on/off ratio of WSe2 -based field-effect transistors have been substantially improved (from ≈10-8 to 10-5 A; ≈104 to 108 ), compared to metal contacts. Future studies on lateral contacts and interconnects using doped TMDCs will pave the way for 2D integrated circuits and flexible electronics.

10.
ACS Appl Mater Interfaces ; 13(10): 11765-11773, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33673737

RESUMEN

High interfacial resistance between electrode and solid electrolyte (SE) is one of the major challenges for the commercial application of all-solid-state batteries (ASSBs), and coating at the interface is an effective way for decreasing the resistance. However, microscopic electrochemistry especially for the electrochemical potential and the distribution of Li+ at the interface has not been well established yet, impeding the in-depth understanding of interfacial Li+ transport. Herein, we have introduced a potential energy profile for Li+, ηLi+, and demonstrated that the interfacial ηLi+ can be evaluated from the calculated interfacial Li vacancy formation energy or the bulk vacancy formation energy and the interface band alignment. Through computational analysis of the representative LiCoO2 cathode/LiNbO3 coating/ß-Li3PS4 SE interfaces using the novel interface structure prediction scheme based on the CALYPSO method, we found that ηLi+ at the LiCoO2/ß-Li3PS4 interface is highly disordered under the influence of the interface reconstruction and is rather electronic conductive. Insertion of LiNbO3 coating can effectively decrease the preference of ion mixing. Besides, the appropriate changes in band alignments lead to a decrease of difference in the interfacial ηLi+ and lower resistances at the interfaces. The results provide a reliable explanation for the effectiveness of the coating layer observed experimentally. Furthermore, our study provides a guidance for the future simulation of the microscopic electrochemistry at the electrode/SE interfaces in ASSBs.

11.
Angew Chem Int Ed Engl ; 60(10): 5114-5120, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33300173

RESUMEN

Extremely high capacity hard carbon for Na-ion battery, delivering 478 mAh g-1 , is successfully synthesized by heating a freeze-dried mixture of magnesium gluconate and glucose by a MgO-template technique. Influences of synthetic conditions and nano-structures on electrochemical Na storage properties in the hard carbon are systematically studied to maximize the reversible capacity. Nano-sized MgO particles are formed in a carbon matrix prepared by pre-treatment of the mixture at 600 °C. Through acid leaching of MgO and carbonization at 1500 °C, resultant hard carbon demonstrates an extraordinarily large reversible capacity of 478 mAh g-1 with a high Coulombic efficiency of 88 % at the first cycle.

12.
ACS Appl Mater Interfaces ; 12(49): 54752-54762, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33226213

RESUMEN

NASICON-type oxide Li1+xAlxTi2-x(PO4)3 (LATP) is expected to be a promising solid electrolyte (SE) for all-solid-state batteries (ASSBs) owing to its high ion conductivity and chemical stability. However, its interface properties with electrodes on the atomic scale remain unclear, but it is crucial for rational control of the ASSBs performance. Herein, we focused on the LATP SE with x = 0.17 and investigated the electron and ion transfer behaviors at the interfaces with the Li metal negative electrode and the LiCoO2 (LCO) positive electrode via explicit interface models and density functional theory calculations. Ti reduction was found at the LATP/Li interface. For the LATP/LCO interface, the results indicated the Li-ion transfer from LCO to LATP upon contact until a certain electric double layer is formed under equilibrium, in which LCO is partially reduced. Co-Ti exchange was also found to be favorable where the Li ion moves with Co3+ to LATP. We also explored the possible interfacial processes during annealing by simulating the oxygen removal effect and found that oxygen vacancy can be more easily formed in the LCO at the interface. It implies that partial Li ions move back to LCO for the local charge neutrality. We also demonstrated higher Li chemical potential around the LATP/LCO interfaces, leading to the dynamical Li-ion depletion upon charging. The calculation results and the deduced mechanisms well explain the experimental results so far and provide insights into the interfacial electron and ion transfer upon contact, during annealing, and charging.

13.
ACS Appl Mater Interfaces ; 12(38): 42734-42738, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32865388

RESUMEN

Aqueous alkali-ion batteries, particularly earth-abundant sodium- or potassium-based systems, are potentially safe and low-cost alternatives to nonaqueous Li-ion batteries. Recently, concentrated aqueous electrolytes with Na and K salts as well as Li ones have been extensively studied to increase the voltage of aqueous batteries; however, the potential windows become narrower in the order of Li > Na > K. Here, we study the difference in the potential windows of Li-, Na-, and K-salt concentrated aqueous electrolytes (hydrate melts) by first-principles molecular dynamics. As the Lewis acidity of alkali cations decreases (Li+ > Na+ > K+), the sacrificial reduction of counter anions is less active and water molecules are more aggregated. This situation is unfavorable for achieving stable anion-derived passivation on negative electrodes as well as for being stabilized to oxidation on positive electrodes. Hence, the Lewis acidity of alkali cations is essential to dominate the potential windows of hydrate-melt electrolytes.

14.
ACS Appl Mater Interfaces ; 12(23): 25775-25785, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32395982

RESUMEN

To clarify the origin of the polarization of magnesium deposition/dissolution reactions, we combined electrochemical measurement, operando soft X-ray absorption spectroscopy (operando SXAS), Raman, and density functional theory (DFT) techniques to three different electrolytes: magnesium bis(trifluoromethanesulfonyl)amide (Mg(TFSA)2)/triglyme, magnesium borohydride (Mg(BH4)2)/tetrahydrofuran (THF), and Mg(TFSA)2/2-methyltetrahydrofuran (2-MeTHF). Cyclic voltammetry revealed that magnesium deposition/dissolution reactions occur in Mg(TFSA)2/triglyme and Mg(BH4)2/THF, while the reactions do not occur in Mg(TFSA)2/2-MeTHF. Raman spectroscopy shows that the [TFSA]- in the Mg(TFSA)2/triglyme electrolyte largely does not coordinate to the magnesium ions, while all of the [TFSA]- in Mg(TFSA)2/2-MeTHF and [BH4]- in Mg(BH4)2/THF coordinate to the magnesium ions. In operando SXAS measurements, the intermediate, such as the Mg+ ion, was not observed at potentials above the magnesium deposition potential, and the local structure distortion around the magnesium ions increases in all of the electrolytes at the magnesium electrode|electrolyte interface during the cathodic polarization. Our DFT calculation and X-ray photoelectron spectroscopy results indicate that the [TFSA]-, strongly bound to the magnesium ion in the Mg(TFSA)2/2-MeTHF electrolyte, undergoes reduction decomposition easily, instead of deposition of magnesium metal, which makes the electrolyte inactive electrochemically. In the Mg(BH4)2/THF electrolyte, because the [BH4]- coordinated to the magnesium ions is stable even under the potential of the magnesium deposition, the magnesium deposition is not inhibited by the decomposition of [BH4]-. Conversely, because [TFSA]- is weakly bound to the magnesium ion in Mg(TFSA)2/triglyme, the reduction decomposition occurs relatively slowly, which allows the magnesium deposition in the electrolyte.

15.
ACS Appl Mater Interfaces ; 12(14): 16350-16358, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32216305

RESUMEN

The garnet-type Li7La3Zr2O12 (LLZO) solid electrolyte is of particular interest because of its good chemical stability under atmospheric condition, suitable for practical all-solid-state batteries (ASSBs). However, recent works observed electrochemical instability at the LLZO/Li interfaces. Herein, we have revealed the origin of the instability by performing a comprehensive first-principles investigation with a high-throughput interface structure search scheme, based on the density functional theory framework. Based on the constructed phase diagrams of low-index surfaces, we found that the coordinatively unsaturated (i.e. coordination number < 6) Zr sites exist widely on the low-energy LLZO surfaces. These undercoordinated Zr sites are reduced once the LLZO surface is in contact with the Li metal, leading to chemical instability of the LLZO/Li interface. Besides, the calculated formation and adhesion energies of interfaces suggest that the Li wettability on the LLZO surface is dependent on the termination structure. The employment of the approaches such as by controlling the synthesis atmosphere are needed for preventing the reduction of LLZO against the Li metal. The present analysis with comprehensive first-principles calculations provides a novel perspective for the rational optimization of the interface between LLZO electrolyte and Li metal anode in the ASSB.

16.
Phys Chem Chem Phys ; 22(19): 10764-10774, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32159181

RESUMEN

Understanding and the control of Li-ion (Li+) transport across the interface between the anode and solid electrolyte interphase (SEI) film or electrolyte is a key issue in battery electrochemistry and interface science. In this study, we investigated the structural, electronic and free energy properties of Li+ migration between a Li-intercalated graphite anode LiCx and Li2CO3 SEI film, by using ab initio molecular dynamics and free energy calculations. We compared three types of graphite edges: H-, OH- and mixed (H, OH, COOH)-terminations, and three cases of transferred Li-ions: Li+ constructing the SEI, excess Li+ and excess Li0 (excess Li+ + e- in anode). After validation of our calculations with Li2CO3 and LiCx bulk systems, we sampled the interfacial structures under thermodynamic equilibrium and demonstrated that the OH- and mixed-terminations had larger binding energies. The calculated free energy profiles of Li+ intercalation from the Li2CO3 SEI to LiC24 showed barriers larger than 1.2 eV irrespective of the terminations and Li+ cases. We also clarified that the charges of Li ions did not change much upon the intercalation. Based on these results and the calculated Li chemical potential, we constructed the probable free energy profile of Li+ between the anode and cathode under charging and discharging. This profile model suggest a possible electric field approximation for the charging stage, and the resultant free energy profiles with such fields gave a ca. 0.5 eV barrier under charging, which was consistent with the experimental values. The present picture will give a crucial insight into Li-ion transport at the battery interfaces.

17.
Phys Chem Chem Phys ; 21(48): 26399-26405, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31793954

RESUMEN

We combined a data science-driven method with quantum chemistry calculations, and applied it to the battery electrolyte problem. We performed quantum chemistry calculations on the coordination energy (Ecoord) of five alkali metal ions (Li, Na, K, Rb, and Cs) to electrolyte solvent, which is intimately related to ion transfer at the electrolyte/electrode interface. Three regression methods, namely, multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), and exhaustive search with linear regression (ES-LiR), were employed to find the relationship between Ecoord and descriptors. Descriptors include both ion and solvent properties, such as the radius of metal ions or the atomic charge of solvent molecules. Our results clearly indicate that the ionic radius and atomic charge of the oxygen atom that is connected to the metal ion are the most important descriptors. Good prediction accuracy for Ecoord of 0.127 eV was obtained using ES-LiR, meaning that we can predict Ecoord for any alkali ion without performing quantum chemistry calculations for ion-solvent pairs. Further improvement in the prediction accuracy was made by applying the exhaustive search with Gaussian process, which yields 0.016 eV for the prediction accuracy of Ecoord.

18.
Phys Chem Chem Phys ; 21(41): 22990-22998, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31599894

RESUMEN

The lithium (Li) complexes of organic electrolyte solvents are theoretically investigated using the long-range correction for density functional theory in order to figure out the cause for the high performance of cyclic carbonate electrolytes in lithium ion batteries (LIBs). Calculations of the Li complexes with ethylene carbonate solvent molecules prove that ten ligand molecules should be incorporated to obtain near-degenerate four- and five-coordination optimum structures and dramatically improved orbital energies. The geometry optimizations of the Li complexes with thirteen types of organic solvent molecules give four-coordination neutral and five-coordination cation complexes for many solvent molecules. The five-coordination Li complexes are considered to use Berry pseudorotation to approach the electrodes from the Li atom. The calculated Koopmans, vertical and adiabatic ionization potentials and electron affinities show that near-degeneracy and structural deformation effects play significant roles in the electronic states of the Li complexes. Mulliken charge and dipole moment analyses indicate that the Li complexes of cyclic carbonates construct a deep electric double layer near electrodes due to the electron-donating ability of the ligand molecules. Molecular orbital analyses also explain that the Li complexes of cyclic carbonates easily construct a solid electrolyte interface, which contributes to Li ion conductance, by localizing the accepted electron to one ligand molecule. In conclusion, the Li complexes of cyclic carbonates have three main features: preference of five-coordination structures, high electron-donating ability of ligand molecules, and localization of the accepted electron to one ligand molecule.

19.
J Phys Chem Lett ; 10(20): 6301-6305, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31512877

RESUMEN

Aqueous electrolytes have great potential to improve the safety and production costs of Li-ion batteries. Our recent materials exploration led to the discovery of the Li-salt dihydrate melt Li(TFSI)0.7(BETI)0.3·2H2O, which possesses an extremely wide potential window. To clarify the detailed liquid structure and electronic states of this unique aqueous system, a first-principles molecular dynamics study has been conducted. We found that water molecules in the hydrate melt exist as isolated monomers or clusters consisting of only a few (at most five) H2O molecules. Both the monomers and the clusters have electronic structures largely deviating from that in bulk water, where the lowest unoccupied states are higher in energy than that of the Li-salt anions, which preferentially cause anion reduction leading to formation of an anion-derived stable solid-electrolyte interphase. This clearly shows the role of characteristic electronic structure inherent to the peculiar water environment for the extraordinary electrochemical stability of hydrate melts.

20.
Phys Chem Chem Phys ; 21(25): 13788-13794, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31210178

RESUMEN

Since a boron-doped diamond (BDD) exhibits excellent electrode properties such as wide potential window, low back-ground current, and high physical and chemical durability, it has been studied as an electrode material for various electrochemical applications. The electrochemical behavior of BDD depends on the surface termination, which can be easily converted by chemical reactions. Fluorine termination has attracted interest because it exhibits unique surface properties such as high hydrophobicity and a low coefficient of friction, and the electrochemical properties also drastically change. However, so far, it has not been elucidated why fluorinated BDD exhibits specific electrochemical properties. In this article, fluorine-terminated BDD was fabricated by a fluorine-containing plasma treatment, and the electrochemical properties were systematically investigated. Together with experiments, we have calculated the interfacial structures and electronic states of hydrogenated, oxygenated, and fluorinated BDD electrodes. As a result, fluorinated BDD showed lower electrochemical reactivity than hydrogenated and oxygenated BDD. Especially, electron transfer between anionic compound and fluorinated BDD was significantly suppressed. Considered together with theoretical calculations, this reactivity could be attributed to the larger interfacial band bending in fluorinated BDD and electrostatic interactions between BDD and redox species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...