Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Radiol Med ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096356

RESUMEN

Magnetic resonance imaging (MRI) is an essential tool for evaluating pelvic disorders affecting the prostate, bladder, uterus, ovaries, and/or rectum. Since the diagnostic pathway of pelvic MRI can involve various complex procedures depending on the affected organ, the Reporting and Data System (RADS) is used to standardize image acquisition and interpretation. Artificial intelligence (AI), which encompasses machine learning and deep learning algorithms, has been integrated into both pelvic MRI and the RADS, particularly for prostate MRI. This review outlines recent developments in the use of AI in various stages of the pelvic MRI diagnostic pathway, including image acquisition, image reconstruction, organ and lesion segmentation, lesion detection and classification, and risk stratification, with special emphasis on recent trends in multi-center studies, which can help to improve the generalizability of AI.

2.
Eur J Radiol Open ; 12: 100570, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828096

RESUMEN

Purpose: Super-resolution deep-learning-based reconstruction: SR-DLR is a newly developed and clinically available deep-learning-based image reconstruction method that can improve the spatial resolution of CT images. The image quality of the output from non-linear image reconstructions, such as DLR, is known to vary depending on the structure of the object being scanned, and a simple phantom cannot explicitly evaluate the clinical performance of SR-DLR. This study aims to accurately investigate the quality of the images reconstructed by SR-DLR by utilizing a structured phantom that simulates the human anatomy in coronary CT angiography. Methods: The structural phantom had ribs and vertebrae made of plaster, a left ventricle filled with dilute contrast medium, a coronary artery with simulated stenosis, and an implanted stent graft. By scanning the structured phantom, we evaluated noise and spatial resolution on the images reconstructed with SR-DLR and conventional reconstructions. Results: The spatial resolution of SR-DLR was higher than conventional reconstructions; the 10 % modulation transfer function of hybrid IR (HIR), DLR, and SR-DLR were 0.792-, 0.976-, and 1.379 cycle/mm, respectively. At the same time, image noise was lowest (HIR: 21.1-, DLR: 19.0-, and SR-DLR: 13.1 HU). SR-DLR could accurately assess coronary artery stenosis and the lumen of the implanted stent graft. Conclusions: SR-DLR can obtain CT images with high spatial resolution and lower noise without special CT equipments, and will help diagnose coronary artery disease in CCTA and other CT examinations that require high spatial resolution.

3.
Diagn Interv Imaging ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38918123

RESUMEN

The rapid advancement of artificial intelligence (AI) in healthcare has revolutionized the industry, offering significant improvements in diagnostic accuracy, efficiency, and patient outcomes. However, the increasing adoption of AI systems also raises concerns about their environmental impact, particularly in the context of climate change. This review explores the intersection of climate change and AI in healthcare, examining the challenges posed by the energy consumption and carbon footprint of AI systems, as well as the potential solutions to mitigate their environmental impact. The review highlights the energy-intensive nature of AI model training and deployment, the contribution of data centers to greenhouse gas emissions, and the generation of electronic waste. To address these challenges, the development of energy-efficient AI models, the adoption of green computing practices, and the integration of renewable energy sources are discussed as potential solutions. The review also emphasizes the role of AI in optimizing healthcare workflows, reducing resource waste, and facilitating sustainable practices such as telemedicine. Furthermore, the importance of policy and governance frameworks, global initiatives, and collaborative efforts in promoting sustainable AI practices in healthcare is explored. The review concludes by outlining best practices for sustainable AI deployment, including eco-design, lifecycle assessment, responsible data management, and continuous monitoring and improvement. As the healthcare industry continues to embrace AI technologies, prioritizing sustainability and environmental responsibility is crucial to ensure that the benefits of AI are realized while actively contributing to the preservation of our planet.

4.
Jpn J Radiol ; 42(7): 685-696, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38551772

RESUMEN

The advent of Deep Learning (DL) has significantly propelled the field of diagnostic radiology forward by enhancing image analysis and interpretation. The introduction of the Transformer architecture, followed by the development of Large Language Models (LLMs), has further revolutionized this domain. LLMs now possess the potential to automate and refine the radiology workflow, extending from report generation to assistance in diagnostics and patient care. The integration of multimodal technology with LLMs could potentially leapfrog these applications to unprecedented levels.However, LLMs come with unresolved challenges such as information hallucinations and biases, which can affect clinical reliability. Despite these issues, the legislative and guideline frameworks have yet to catch up with technological advancements. Radiologists must acquire a thorough understanding of these technologies to leverage LLMs' potential to the fullest while maintaining medical safety and ethics. This review aims to aid in that endeavor.


Asunto(s)
Aprendizaje Profundo , Radiología , Humanos , Radiología/métodos , Radiólogos , Inteligencia Artificial , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...