Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Biol Med (Maywood) ; 247(23): 2081-2089, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35983838

RESUMEN

There is a continuing need for biosensors that can be used in the diagnosis of COVID-19 infection and to measure a subject's immune response to the virus itself (SARS-CoV-2). In this study, grating-coupled fluorescent plasmonic (GC-FP)-based detection of SARS-CoV-2 antigens was coupled with antibody detection to yield a dual-mode detection assay. Pairs of capture and detection antibodies were screened for direct detection of the SARS-CoV-2 nucleocapsid (Nuc) antigen, which were then combined with an existing GC-FP antibody detection assay. Nuc could be detected as low as 1 µg/mL concentrations, while antibodies were detectable to 50 ng/mL. The dual detection assay was tested by adding purified Nuc antigen to serum from a polymerase chain reaction (PCR)-positive COVID-19-infected individual. Using this sample, co-detection of Nuc antigen and anti-spike protein antibodies was successfully performed on a single GC-FP chip. Total assay time was 1 h, making this the first known example of rapid dual antibody and antigen detection on the same biosensor chip.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Anticuerpos Antivirales , Prueba de COVID-19 , Sensibilidad y Especificidad
2.
Microbiol Spectr ; 9(2): e0089021, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34585942

RESUMEN

Measuring the antibody response to 2019 SARS CoV2 is critical for diagnostic purposes, for monitoring the prevalence of infection, and for gauging the efficacy of the worldwide vaccination effort for COVID-19. In this study, a microchip-based grating-coupled fluorescent plasmonic (GC-FP) assay was used to measure antibody levels that resulted from COVID-19 infection and vaccination. In addition, we measured the relative antibody binding toward antigens from the CoV2 virus variants strains B.1.1.7 (Alpha) and B.1.351 (Beta). Antibody levels against multiple antigens within the SARS CoV2 spike protein were significantly elevated for both vaccinated and infected individuals, while those against the nucleocapsid (N) protein were only elevated for infected individuals. GC-FP was effective for monitoring the IgG-based serological response to vaccination throughout the vaccination sequence and also resolved acute (within hours) increases in antibody levels. A significant decrease in antibody binding to antigens from the B.1.351 variant, but not B.1.1.7, was observed for all vaccinated subjects when measured by GC-FP compared to the 2019 SARS CoV2 antigens. These results were corroborated by competitive enzyme-linked immunosorbent assay (ELISA). Collectively, the findings suggest that GC-FP is a viable, rapid, and accurate method for measuring both overall antibody levels to SARS CoV2 and relative antibody binding to viral variants during infection or vaccination. IMPORTANCE In this work, a novel biosensor technology was used to measure antibody levels that resulted from vaccination against COVID-19 and/or from infection with the virus. Importantly, this approach enables quantification of antibody levels, which can provide information about the timing and level of immune response. Due the multiplexed nature of this approach, antibody binding to both the original 2019 SARS CoV-2 strain and variant strains can be performed simultaneously and in a short (30-min) time frame.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Afinidad de Anticuerpos/inmunología , Técnicas Biosensibles , COVID-19/diagnóstico , COVID-19/inmunología , Pruebas con Sangre Seca/métodos , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G/sangre , Fosfoproteínas/inmunología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación
3.
PLoS One ; 15(2): e0228772, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32040491

RESUMEN

Lyme disease (LD) diagnosis using the current two-tier algorithm is constrained by low sensitivity for early-stage infection and ambiguity in determining treatment response. We recently developed a protein microarray biochip that measures diagnostic serum antibody targets using grating-coupled fluorescent plasmonics (GC-FP) technology. This strategy requires microliters of blood serum to enable multiplexed biomarker screening on a compact surface and generates quantitative results that can be further processed for diagnostic scoring. The GC-FP biochip was used to detect serum antibodies in patients with active and convalescent LD, as well as various negative controls. We hypothesized that the quantitative, high-sensitivity attributes of the GC-FP approach permit: 1) screening of antibody targets predictive for LD status, and 2) development a diagnostic algorithm that is more sensitive, specific, and informative than the standard ELISA and Western blot assays. Notably, our findings led to a diagnostic algorithm that may be more sensitive than the current standard for detecting early LD, while maintaining 100% specificity. We further show that analysis of relative antibody levels to predict disease status, such as in acute and convalescent stages of infection, is possible with a highly sensitive and quantitative platform like GC-FP. The results from this study add to the urgent conversation regarding better diagnostic strategies and more effective treatment for patients affected by tick-borne disease.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Fluorescencia , Dispositivos Laboratorio en un Chip , Enfermedad de Lyme/sangre , Enfermedad de Lyme/diagnóstico , Tamizaje Masivo/instrumentación , Humanos , Enfermedad de Lyme/inmunología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...