Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mamm Biol ; 102(3): 551-566, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36721404

RESUMEN

Our interpretation of animal social structures is inherently dependent on our ability to define association criteria that are biologically meaningful. However, association thresholds are often based upon generalized preconceptions of a species' social behaviour, and the impact of using these arbitrary definitions has been largely overlooked. In this study we suggest a probability-based method for defining association thresholds using lagged identification rates on photographic records of identifiable individuals. This technique uses a simple model of emigration/immigration from photographable clusters to identify the time-dependent lag value between identifications of two individuals that corresponds to approximately 75% probability of being in close spatial proximity and likely associating. This lag value is then used as the threshold to define associations for social analyses. We applied the technique to a dataset of northern resident killer whales (Orcinus orca) in the Northeast Pacific and tested its performance against two arbitrary thresholds. The probabilistic association maximized the variation in association strengths at different levels of the social structure, in line with known social patterns in this population. Furthermore, variability in inferred social structure metrics generated by different association criteria highlighted the consequential effect of choosing arbitrary thresholds. Data-driven association thresholds are a promising approach to study populations without the need to subjectively define associations in the field, especially in societies with prominent fission-fusion dynamics. This method is applicable to any dataset of sequential identifications where it can be assumed that associated individuals will tend to be identified in close proximity. Supplementary Information: The online version contains supplementary material available at 10.1007/s42991-022-00231-9.

2.
Mol Ecol ; 30(23): 6162-6177, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34416064

RESUMEN

Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically, the probability of inbreeding mediated by mating system and/or population demography. Here, we investigated whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global data set of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstructed demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We found a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (<1 Mb), reflecting high background relatedness due to coalescence of haplotypes deep within the pedigree. In contrast, longer and therefore younger ROH (>1.5 Mb) were found in low latitude populations, and populations of known conservation concern. These include a Scottish killer whale, for which 37.8% of the autosomes were comprised of ROH >1.5 Mb in length. The fate of this population, in which only two adult males have been sighted in the past five years, and zero fecundity over the last two decades, may be inextricably linked to its demographic history and consequential inbreeding depression.


Asunto(s)
Orca , Animales , Genoma , Homocigoto , Endogamia , Masculino , Polimorfismo de Nucleótido Simple , Densidad de Población , Orca/genética
3.
Mol Ecol ; 28(14): 3427-3444, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31131963

RESUMEN

Reconstruction of the demographic and evolutionary history of populations assuming a consensus tree-like relationship can mask more complex scenarios, which are prevalent in nature. An emerging genomic toolset, which has been most comprehensively harnessed in the reconstruction of human evolutionary history, enables molecular ecologists to elucidate complex population histories. Killer whales have limited extrinsic barriers to dispersal and have radiated globally, and are therefore a good candidate model for the application of such tools. Here, we analyse a global data set of killer whale genomes in a rare attempt to elucidate global population structure in a nonhuman species. We identify a pattern of genetic homogenisation at lower latitudes and the greatest differentiation at high latitudes, even between currently sympatric lineages. The processes underlying the major axis of structure include high drift at the edge of species' range, likely associated with founder effects and allelic surfing during postglacial range expansion. Divergence between Antarctic and non-Antarctic lineages is further driven by ancestry segments with up to four-fold older coalescence time than the genome-wide average; relicts of a previous vicariance during an earlier glacial cycle. Our study further underpins that episodic gene flow is ubiquitous in natural populations, and can occur across great distances and after substantial periods of isolation between populations. Thus, understanding the evolutionary history of a species requires comprehensive geographic sampling and genome-wide data to sample the variation in ancestry within individuals.


Asunto(s)
Flujo Génico , Genoma , Orca/genética , Alelos , Animales , Regiones Antárticas , Secuencia de Bases , Núcleo Celular/genética , ADN Mitocondrial/genética , Flujo Genético , Variación Genética , Geografía , Cadenas de Markov , Modelos Genéticos , Filogenia , Análisis de Componente Principal
4.
Ecol Evol ; 8(23): 11900-11913, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30598785

RESUMEN

Local adaption through ecological niche specialization can lead to genetic structure between and within populations. In the Northeast Pacific, killer whales (Orcinus orca) of the same population have uniform specialized diets that are non-overlapping with other sympatric, genetically divergent, and socially isolated killer whale ecotypes. However, killer whales in Iceland show intrapopulation variation of isotopic niches and observed movement patterns: some individuals appear to specialize on herring and follow it year-round while others feed upon herring only seasonally or opportunistically. We investigated genetic differentiation among Icelandic killer whales with different isotopic signatures and observed movement patterns. This information is key for management and conservation purposes but also for better understanding how niche specialization drives genetic differentiation. Photo-identified individuals (N = 61) were genotyped for 22 microsatellites and a 611 bp portion of the mitochondrial DNA (mtDNA) control region. Photo-identification of individuals allowed linkage of genetic data to existing data on individual isotopic niche, observed movement patterns, and social associations. Population subdivision into three genetic units was supported by a discriminant analysis of principal components (DAPC). Genetic clustering corresponded to the distribution of isotopic signatures, mtDNA haplotypes, and observed movement patterns, but genetic units were not socially segregated. Genetic differentiation was weak (F ST < 0.1), suggesting ongoing gene flow or recent separation of the genetic units. Our results show that killer whales in Iceland are not as genetically differentiated, ecologically discrete, or socially isolated as the Northeast Pacific prey-specialized killer whales. If any process of ecological divergence and niche specialization is taking place among killer whales in Iceland, it is likely at a very early stage and has not led to the patterns observed in the Northeast Pacific.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...