Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Med Inform Decis Mak ; 24(1): 170, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886772

RESUMEN

BACKGROUND: Artificial intelligence (AI) has become a pivotal tool in advancing contemporary personalised medicine, with the goal of tailoring treatments to individual patient conditions. This has heightened the demand for access to diverse data from clinical practice and daily life for research, posing challenges due to the sensitive nature of medical information, including genetics and health conditions. Regulations like the Health Insurance Portability and Accountability Act (HIPAA) in the U.S. and the General Data Protection Regulation (GDPR) in Europe aim to strike a balance between data security, privacy, and the imperative for access. RESULTS: We present the Gemelli Generator - Real World Data (GEN-RWD) Sandbox, a modular multi-agent platform designed for distributed analytics in healthcare. Its primary objective is to empower external researchers to leverage hospital data while upholding privacy and ownership, obviating the need for direct data sharing. Docker compatibility adds an extra layer of flexibility, and scalability is assured through modular design, facilitating combinations of Proxy and Processor modules with various graphical interfaces. Security and reliability are reinforced through components like Identity and Access Management (IAM) agent, and a Blockchain-based notarisation module. Certification processes verify the identities of information senders and receivers. CONCLUSIONS: The GEN-RWD Sandbox architecture achieves a good level of usability while ensuring a blend of flexibility, scalability, and security. Featuring a user-friendly graphical interface catering to diverse technical expertise, its external accessibility enables personnel outside the hospital to use the platform. Overall, the GEN-RWD Sandbox emerges as a comprehensive solution for healthcare distributed analytics, maintaining a delicate equilibrium between accessibility, scalability, and security.


Asunto(s)
Seguridad Computacional , Confidencialidad , Humanos , Seguridad Computacional/normas , Confidencialidad/normas , Inteligencia Artificial , Hospitales
2.
Sci Rep ; 14(1): 11514, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769364

RESUMEN

Comorbidity is widespread in the ageing population, implying multiple and complex medical needs for individuals and a public health burden. Determining risk factors and predicting comorbidity development can help identify at-risk subjects and design prevention strategies. Using socio-demographic and clinical data from approximately 11,000 subjects monitored over 11 years in the English Longitudinal Study of Ageing, we develop a dynamic Bayesian network (DBN) to model the onset and interaction of three cardio-metabolic comorbidities, namely type 2 diabetes (T2D), hypertension, and heart problems. The DBN allows us to identify risk factors for developing each morbidity, simulate ageing progression over time, and stratify the population based on the risk of outcome occurrence. By applying hierarchical agglomerative clustering to the simulated, dynamic risk of experiencing morbidities, we identified patients with similar risk patterns and the variables contributing to their discrimination. The network reveals a direct joint effect of biomarkers and lifestyle on outcomes over time, such as the impact of fasting glucose, HbA1c, and BMI on T2D development. Mediated cross-relationships between comorbidities also emerge, showcasing the interconnected nature of these health issues. The model presents good calibration and discrimination ability, particularly in predicting the onset of T2D (iAUC-ROC = 0.828, iAUC-PR = 0.294) and survival (iAUC-ROC = 0.827, iAUC-PR = 0.311). Stratification analysis unveils two distinct clusters for all comorbidities, effectively discriminated by variables like HbA1c for T2D and age at baseline for heart problems. The developed DBN constitutes an effective, highly-explainable predictive risk tool for simulating and stratifying the dynamic risk of developing cardio-metabolic comorbidities. Its use could help identify the effects of risk factors and develop health policies that prevent the occurrence of comorbidities.


Asunto(s)
Envejecimiento , Teorema de Bayes , Comorbilidad , Diabetes Mellitus Tipo 2 , Modelos Estadísticos , Humanos , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Masculino , Anciano , Persona de Mediana Edad , Estudios Longitudinales , Factores de Riesgo , Hipertensión/epidemiología , Adulto , Anciano de 80 o más Años , Cardiopatías/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...