Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(4)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38671836

RESUMEN

Obesity has a great impact on adipose tissue biology, based on its function as a master regulator of energy balance. Brown adipose tissue (BAT) undergoes remodeling, and its activity declines in obese subjects due to a whitening process. The anti-obesity properties of fruit extracts have been reported. The effects of tart cherry against oxidative stress, inflammation, and the whitening process in the BAT of obese rats were investigated. Intrascapular BAT (iBAT) alterations and effects of Prunus cerasus L. were debated in rats fed for 17 weeks with a high-fat diet (DIO), in DIO supplemented with seed powder (DS), and with seed powder plus the juice (DJS) of tart cherry compared to CHOW rats fed with a normo-caloric diet. iBAT histologic observations revealed a whitening process in DIO rats that was reduced in the DS and DJS groups. A modulation of uncoupling protein-1 (UCP-1) protein and gene expression specifically were detected in the obese phenotype. An upregulation of UCP-1 and related thermogenic genes after tart cherry intake was detected compared to the DIO group. Metabolic adjustment, endoplasmic reticulum stress, protein carbonylation, and the inflammatory microenvironment in the iBAT were reported in DIO rats. The analysis demonstrated an iBAT modulation that tart cherry promoted. In addition to our previous results, these data confirm the protective impact of tart cherry consumption on obesity.

2.
Biomedicines ; 11(12)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38137552

RESUMEN

Huntington's disease (HD) is an autosomal-dominant inherited neurological disorder caused by a genetic mutation in the IT15 gene. This neurodegenerative disorder is caused by a polyglutamine repeat expansion mutation in the widely expressed huntingtin (HTT) protein. HD is characterized by the degeneration of basal ganglia neurons and progressive cell death in intrinsic neurons of the striatum, accompanied by dementia and involuntary abnormal choreiform movements. Animal models have been extensively studied and have proven to be extremely valuable for therapeutic target evaluations. They reveal the hallmark of the age-dependent formation of aggregates or inclusions consisting of misfolded proteins. Animal models of HD have provided a therapeutic strategy to treat HD by suppressing mutant HTT (mHTT). Transgenic animal models have significantly increased our understanding of the molecular processes and pathophysiological mechanisms underlying the HD behavioral phenotype. Since effective therapies to cure or interrupt the course of the disease are not yet available, clinical research will have to make use of reliable animal models. This paper reviews the main studies of rodents as HD animal models, highlighting the neurological and behavioral differences between them. The choice of an animal model depends on the specific aspect of the disease to be investigated. Toxin-based models can still be useful, but most experimental hypotheses depend on success in a genetic model, whose choice is determined by the experimental question. There are many animal models showing similar HD symptoms or pathologies. They include chemical-induced HDs and genetic HDs, where cell-free and cell culture, lower organisms (such as yeast, Drosophila, C. elegans, zebrafish), rodents (mice, rats), and non-human primates are involved. These models provide accessible systems to study molecular pathogenesis and test potential treatments. For developing more effective pharmacological treatments, better animal models must be available and used to evaluate the efficacy of drugs.

3.
J Neurosci Res ; 101(3): 298-315, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36434776

RESUMEN

Batten disease consists of a family of primarily autosomal recessive, progressive neuropediatric disorders, also known as neuronal ceroid lipofuscinoses (NCLs). These pathologies are characterized by seizures and visual, cognitive and motor decline, and premature death. The pathophysiology of this rare disease is still unclear despite the years of trials and financial aids. This paper has reviewed advantages and limits of in vivo and in vitro models of Batten disease from murine and larger animal models to primitive unicellular models, until the most recently developed patient-derived induced pluripotent stem cells. For each model advantages, limits and applications were analyzed. The first prototypes investigated were murine models that due to their limits were replaced by larger animals. In vitro models gradually replaced animal models for practical, cost, and ethical reasons. Using induced pluripotent stem cells to study neurodegeneration is a new way of studying the disease, since they can be distinguished into differentiating elements like neurons, which are susceptible to neurodegeneration. In vivo and in vitro models have contributed to clarifying to some extent the pathophysiology of the disease. The collection and sharing of suitable human bio samples likely through biobanks can contribute to a better understanding, prevention, and to identify possible treatment strategies of Batten disease.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Humanos , Animales , Ratones , Lipofuscinosis Ceroideas Neuronales/patología , Lipofuscinosis Ceroideas Neuronales/terapia , Modelos Animales de Enfermedad , Convulsiones , Enfermedades Raras
4.
Biology (Basel) ; 11(5)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35625374

RESUMEN

Obesity is a risk factor for cardiovascular diseases, frequently related to oxidative stress and inflammation. Dietary antioxidant compounds improve heart health. Here, we estimate the oxidative grade and inflammation in the heart of dietary-induced obese (DIO) rats after exposure to a high-fat diet compared to a standard diet. The effects of tart cherry seed powder and seed powder plus tart cherries juice were explored. Morphological analysis and protein expressions were performed in the heart. The oxidative status was assessed by the measurement of protein oxidation and 4-hydroxynonenal in samples. Immunochemical and Western blot assays were performed to elucidate the involved inflammatory markers as proinflammatory cytokines and cellular adhesion molecules. In the obese rats, cardiomyocyte hypertrophy was accompanied by an increase in oxidative state proteins and lipid peroxidation. However, the intake of tart cherries significantly changed these parameters. An anti-inflammatory effect was raised from tart cherry consumption, as shown by the downregulation of analyzed endothelial cell adhesion molecules and cytokines compared to controls. Tart cherry intake should be recommended as a dietary supplement to prevent or counteract heart injury in obese conditions.

5.
Artículo en Inglés | MEDLINE | ID: mdl-35564494

RESUMEN

During the recent COVID-19 pandemic, healthcare providers have been encouraged to increase their use of telemedicine and to adopt telemedicine platforms for the majority of their clients who have chronic illnesses. Due to the outbreak itself, almost all countries worldwide were placed under emergency lockdowns. In this paper, we reviewed the literature regarding the use of telemedicine during the COVID-19 pandemic. Consequentially, we identified the adoption of telemedicine in various countries worldwide and evaluated their future steps in order to increase the adoption of e-health technologies. As a result of COVID-19, the e-health agenda, especially telemedicine, has been accelerated in several countries. COVID-19 is affecting individuals' daily lives and has created major difficulties in the management of healthcare facilities for both infected and non-infected patients. A large portion of the rapid increase in the use of telemedicine can be attributed to evidence from previous pandemics as well as progress made by the field in response to COVID-19, especially in industrialized countries. A lack of effective treatment, large numbers of unvaccinated individuals, as well as social distancing and lockdown measures suggest telemedicine is the safest and most appropriate way of working with patients and doctors. In spite of this willingness, a large number of barriers need to be overcome in order for the telemedicine system to function properly and effectively throughout countries. In order for telemedicine to be sustainable and beneficial beyond the pandemic, several technical, educational, infrastructure, legal, and economic issues must be addressed and solved.


Asunto(s)
COVID-19 , Telemedicina , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Humanos , Pandemias/prevención & control , SARS-CoV-2
6.
Molecules ; 27(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35458588

RESUMEN

The A2A adenosine receptor (A2AAR) is one of the four subtypes activated by nucleoside adenosine, and the molecules able to selectively counteract its action are attractive tools for neurodegenerative disorders. In order to find novel A2AAR ligands, two series of compounds based on purine and triazolotriazine scaffolds were synthesized and tested at ARs. Compound 13 was also tested in an in vitro model of neuroinflammation. Some compounds were found to possess high affinity for A2AAR, and it was observed that compound 13 exerted anti-inflammatory properties in microglial cells. Molecular modeling studies results were in good agreement with the binding affinity data and underlined that triazolotriazine and purine scaffolds are interchangeable only when 5- and 2-positions of the triazolotriazine moiety (corresponding to the purine 2- and 8-positions) are substituted.


Asunto(s)
Antagonistas del Receptor de Adenosina A2 , Antagonistas de Receptores Purinérgicos P1 , Antagonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas de Receptores Purinérgicos P1/farmacología , Purinas/química , Receptor de Adenosina A2A/metabolismo , Relación Estructura-Actividad
7.
Cells ; 11(7)2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35406683

RESUMEN

Brain and retinal organoids are functional and dynamic in vitro three-dimensional (3D) structures derived from pluripotent stem cells that spontaneously organize themselves to their in vivo counterparts. Here, we review the main literature data of how these organoids have been developed through different protocols and how they have been technically analyzed. Moreover, this paper reviews recent advances in using organoids to model neurological and retinal diseases, considering their potential for translational applications but also pointing out their limitations. Since the blood-brain barrier (BBB) and blood-retinal barrier (BRB) are understood to play a fundamental role respectively in brain and eye functions, both in health and in disease, we provide an overview of the progress in the development techniques of in vitro models as reliable and predictive screening tools for BBB and BRB-penetrating compounds. Furthermore, we propose potential future directions for brain and retinal organoids, in which dedicated biobanks will represent a novel tool for neuroscience and ophthalmology research.


Asunto(s)
Organoides , Células Madre Pluripotentes , Barrera Hematoencefálica , Encéfalo , Retina
8.
Nutrients ; 14(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35334899

RESUMEN

A link between obesity and cerebral health is receiving growing recognition. Here, we investigate in the frontal cortex and hippocampus the potential involvement of cholinergic markers in brain alterations previously reported in rats with obesity induced by diet (DIO) after long-term exposure (17 weeks) to a high-fat diet (HFD) in comparison with animals fed with a standard diet (CHOW). The obesity developed after 5 weeks of HFD. Bodyweight, systolic blood pressure, glycemia, and insulin levels were increased in DIO rats compared to the CHOW group. Measurements of malondialdehyde (MDA) provided lipid peroxidation in HFD-fed rats. Western blot and immunohistochemical techniques were performed. Our results showed a higher expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) in obese rats but not the VAChT expression in the frontal cortex after 17 weeks of HFD. Furthermore, the acetylcholinesterase (AChE) enzyme was downregulated in HFD both in the frontal cortex and hippocampus. In the brain regions analyzed, it was reported a modulation of certain cholinergic receptors expressed pre- and post-synaptically (alpha7 nicotinic receptor and muscarinic receptor subtype 1). Collectively, these findings point out precise changes of cholinergic markers that can be targeted to prevent cerebral injuries related to obesity.


Asunto(s)
Acetilcolinesterasa , Dieta Alta en Grasa , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/metabolismo , Colinérgicos/metabolismo , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Ratas
9.
Eur J Histochem ; 65(s1)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34814650

RESUMEN

Evidence suggests that transient receptor potential (TRP) ion channels dysfunction significantly contributes to the physiopathology of metabolic and neurological disorders. Dysregulation in functions and expression in genes encoding the TRP channels cause several inherited diseases in humans (the so-called 'TRP channelopathies'), which affect the cardiovascular, renal, skeletal, and nervous systems. This study aimed to evaluate the expression of ion channels in the forebrain of rats with diet-induced obesity (DIO). DIO rats were studied after 17 weeks under a hypercaloric diet (high-fat diet, HFD) and were compared to the control rats with a standard diet (CHOW). To determine the systemic effects of HFD exposure, we examined food intake, fat mass content, fasting glycemia, insulin levels, cholesterol, and triglycerides. qRT-PCR, Western blot, and immunochemistry analysis were performed in the frontal cortex (FC) and hippocampus (HIP). After 17 weeks of HFD, DIO rats increased their body weight significantly compared to the CHOW rats. In DIO rats, TRPC1 and TRPC6 were upregulated in the HIP, while they were downregulated in the FC. In the case of TRPM2 expression, instead was increased both in the HIP and in the FC. These could be related to the increase of proteins and nucleic acid oxidation. TRPV1 and TRPV2 gene expression showed no differences both in the FC and HIP. In general, qRT-PCR analyses were confirmed by Western blot analysis. Immunohistochemical procedures highlighted the expression of the channels in the cell body of neurons and axons, particularly for the TRPC1 and TRPC6. The alterations of TRP channel expression could be related to the activation of glial cells or the neurodegenerative process presented in the brain of the DIO rat highlighted with post synaptic protein (PSD 95) alterations. The availability of suitable animal models may be useful for studying possible pharmacological treatments to counter obesity-induced brain injury. The identified changes in DIO rats may represent the first insight to characterize the neuronal alterations occurring in obesity. Further investigations are necessary to characterize the role of TRP channels in the regulation of synaptic plasticity and obesity-related cognitive decline.


Asunto(s)
Lóbulo Frontal/metabolismo , Hipocampo/metabolismo , Obesidad/fisiopatología , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Axones/metabolismo , Dieta Alta en Grasa , Regulación hacia Abajo/fisiología , Lóbulo Frontal/patología , Expresión Génica/fisiología , Hipocampo/patología , Masculino , Obesidad/patología , Estrés Oxidativo/fisiología , Ratas Wistar , Regulación hacia Arriba/fisiología
10.
Cells ; 10(10)2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34685507

RESUMEN

The association between obesity and loss of cognitive performance has been recognized. Although there are data regarding the metabolic alterations in obese conditions and the development of neuroinflammation, no clear evidence concerning obesity-related cholinergic and synaptic impairments in the frontal cortex and hippocampus has been reported yet. Here, we investigate different cholinergic and synaptic markers in 12-, 16-, and 20-week-old obese Zucker rats (OZRs) compared with lean littermate rats (LZRs), using immunochemical and immunohistochemical analysis. Consequently, OZRs showed body weight gain, hypertension, and dysmetabolism. In 20-week-old OZRs, the reduction of vesicular acetylcholine transporter (VAChT) and alpha7 nicotinic acetylcholine receptors (α7nAChR) occurred both in the frontal cortex and in the hippocampus, suggesting a cognitive dysfunction due to obesity and aging. Among the muscarinic receptors analyzed, the level of expression of type 1 (mAChR1) was lower in the hippocampus of the older OZRs. Finally, we showed synaptic dysfunctions in OZRs, with a reduction of synaptophysin (SYP) and synaptic vesicle glycoprotein 2B (SV2B) in 20-week-old OZRs, both in the frontal cortex and in the hippocampus. Taken together, our data suggest specific alterations of cholinergic and synaptic markers that can be targeted to prevent cognitive deficits related to obesity and aging.


Asunto(s)
Encéfalo/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Obesidad/metabolismo , Sinapsis/metabolismo , Envejecimiento/fisiología , Animales , Glucemia/metabolismo , Modelos Animales de Enfermedad , Hipertensión/metabolismo , Obesidad/complicaciones , Ratas
11.
Antioxidants (Basel) ; 10(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201726

RESUMEN

Renal and cardiac impairments are frequent events in the presence of hypertension. Organ damage is mainly linked to oxidative stress due to high blood pressure and may be reduced by antioxidant supplementation. Alpha-lipoic acid (ALA) is one of most effective antioxidants. It is widely used as a nutritional supplement in a racemic mixture (+/-), even though the (+)-enantiomer is biologically active. This study was designed to investigate the effect of treatment with (+/-)-ALA and its enantiomers on renal and heart parenchyma in spontaneously hypertensive rats (SHR), using immunochemical and immunohistochemical techniques. The results confirmed that the oxidative mechanisms of organ alterations, due to hypertension, and characterized by glomerular and tubular lesions, left ventricular hypertrophy, and fibrosis but not by apoptosis were accompanied by proteins' and nucleic acids' oxidation. We found greater effectiveness of (+)-ALA compared to (+/-)-ALA in reducing oxidative stress, cardiac and renal damages in SHR. To conclude, these data propose (+)-ALA as one of the more appropriate antioxidant molecules to prevent renal and cardiac alterations associated with hypertension.

12.
Antioxidants (Basel) ; 10(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071903

RESUMEN

Obesity represents one of the most important challenges in the contemporary world that must be overcome. Different pathological consequences of these physical conditions have been studied for more than 30 years. The most nagging effects were found early in the cardiovascular system. However, later, its negative impact was also investigated in several other organs. Damage at cellular structures due to overexpression of reactive oxygen species together with mechanisms that cause under-production of antioxidants leads to the development of obesity-related complications. In this view, the negative results of oxidant molecules due to obesity were studied in various districts of the body. In the last ten years, scientific literature has reported reasonable evidence regarding natural and synthetic compounds' supplementation, which showed benefits in reducing oxidative stress and inflammatory processes in animal models of obesity. This article attempts to clarify the role of oxidative stress due to obesity and the opposing role of antioxidants to counter it, reported in preclinical studies. This analysis aims to clear-up different mechanisms that lead to the build-up of pro-oxidants during obesity and how various molecules of different origins hinder this phenomenon, behaving as antioxidants.

13.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946540

RESUMEN

Overweight and obesity are key risk factors of cardiovascular disease (CVD). Obesity is currently presented as a pro-inflammatory state with an expansion in the outflow of inflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), alongside the expanded emission of leptin. The present review aimed to evaluate the relationship between obesity and inflammation and their impacts on the development of cardiovascular disease. A literature search was conducted by employing three academic databases, namely PubMed (Medline), Scopus (EMBASE), and the Cumulative Index to Nursing and Allied Health Literature (CINAHL). The search presented 786 items, and by inclusion and exclusion filterers, 59 works were considered for final review. The Newcastle-Ottawa Scale (NOS) method was adopted to conduct quality assessment; 19 papers were further selected based on the quality score. Obesity-related inflammation leads to a low-grade inflammatory state in organisms by upregulating pro-inflammatory markers and downregulating anti-inflammatory cytokines, thereby contributing to cardiovascular disease pathogenesis. Because of inflammatory and infectious symptoms, adipocytes appear to instigate articulation and discharge a few intense stage reactants and carriers of inflammation. Obesity and inflammatory markers are strongly associated, and are important factors in the development of CVD. Hence, weight management can help prevent cardiovascular risks and poor outcomes by inhibiting inflammatory mechanisms.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Inflamación/complicaciones , Obesidad/complicaciones , Adipocitos/metabolismo , Adipocitos/patología , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Citocinas/análisis , Citocinas/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Obesidad/metabolismo , Obesidad/patología
14.
Molecules ; 26(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807712

RESUMEN

BACKGROUND: Tart cherries (Prunus cerasus L.) are a rich source of anthocyanins. They are phytochemical flavonoids found in red and blue fruits, and vegetables that can reduce hyperlipidemia. Visceral Adipose Tissue (VAT) has emerged as a major player in driving obesity-related inflammatory response. METHODS: This study has investigated the potential positive effects of tart cherries on rats with Diet-Induced Obesity (DIO). In particular, the inflammatory status in retroperitoneal (RPW) and perigonadal (PGW) adipose tissue were studied. Rats were fed ad libitum for 17 weeks with a hypercaloric diet with the supplementation of tart cherries seeds powder (DS) and seeds powder plus tart cherries juice containing 1mg of anthocyanins (DJS). In RPW and PGW, expression of CRP, IL-1 ß, TNF-α, CCL2 and CD36, were measured by qRT-PCR, Western blot and immunohistochemistry techniques. RESULTS: No differences in the weight of RPW and PGW animals were found between DS and DJS groups compared to DIO rats. However, an increase of inflammatory markers was observed in DIO group in comparison with control lean rats. A modulation of these markers was evident upon tart cherry supplementation. CONCLUSION: Study results suggest that tart cherry enriched-diet did not modify the accumulation of visceral fat, but it decreased inflammatory markers in both tissues. Therefore, this supplementation could be useful, in combination with healthy lifestyles, to modify adipose tissue cell metabolism limiting-obesity related organ damage.


Asunto(s)
Biomarcadores/metabolismo , Jugos de Frutas y Vegetales , Grasa Intraabdominal/metabolismo , Obesidad/dietoterapia , Prunus avium/química , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Regulación de la Expresión Génica , Grasa Intraabdominal/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Obesidad/etiología , Paniculitis/dietoterapia , Paniculitis/genética , Paniculitis/metabolismo , Ratas Wistar , Semillas
15.
Eur J Nutr ; 60(5): 2695-2707, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33386893

RESUMEN

PURPOSE: There is increasing evidence for the involvement of dietary bioactive compounds in the cross-talk modulation of endocannabinoid system and some of the key regulators of transcriptional control for adipogenesis. METHODS: We aimed to characterize the expression of cannabinoid CB1/CB2 receptors and fatty acid amide hydrolase (FAAH) along with selected adipogenesis-related genes (PPARγ, SREBP-1c and PREF-1), adipocyte-secreted factors (leptin and adiponectin), mitochondrial bioenergetic modulators (PGC-1A and UCP-2), and transient receptor potential vanilloid subtype 1 (TRPV1) and 2 (TRPV2) channels in visceral adipose tissue of rats fed with a high-fat diet (HFD) containing either tart cherry seeds alone or tart cherry seeds and juice for 17 weeks. The visceral adipose tissue was weighed and checked the expression of different markers by qRT-PCR, Western blot and immunohistochemistry. RESULTS: Tart cherry supplements were able to downregulate the HFD-induced mRNA expression of CB1 receptor, SREBP-1c, PPARγ, leptin, TRPV1 and TRPV2 resulting in potential anti-adipogenic effects. CONCLUSION: The present study points out that the intake of bioactive constituents of tart cherry may attenuate the effect of adipogenesis by acting directly on the adipose tissue and modulating the interplay between CB1, PPARγ and TRPV channel gene transcription.


Asunto(s)
Prunus avium , Adipogénesis , Tejido Adiposo , Animales , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Grasa Intraabdominal , Obesidad/genética , ARN Mensajero/genética , Ratas
16.
Nutrients ; 12(11)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202557

RESUMEN

The dysfunction of melanocortin signaling has been associated with obesity, given the important role in the regulation of energy homeostasis, food intake, satiety and body weight. In the hypothalamus, the melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) contribute to the stability of these processes, but MC3R and MC4R are also localized in the mesolimbic dopamine system, the region that responds to the reinforcing properties of highly palatable food (HPF) and where these two receptors seem to affect food reward and motivation. Loss of function of the MC4R, resulting from genetic mutations, leads to overeating in humans, but to date, a clear understanding of the underlying mechanisms and behaviors that promote overconsumption of caloric foods remains unknown. Moreover, the MC4R demonstrated to be a crucial modulator of the stress response, factor that is known to be strictly related to binge eating behavior. In this review, we will explore the preclinical and clinical studies, and the controversies regarding the involvement of melanocortin system in altered eating patterns, especially binge eating behavior, food reward and motivation.


Asunto(s)
Bulimia/genética , Ingestión de Alimentos/genética , Conducta Alimentaria , Hiperfagia/genética , Obesidad/genética , Receptor de Melanocortina Tipo 4/genética , Índice de Masa Corporal , Ingestión de Alimentos/psicología , Humanos , Hipotálamo/metabolismo , Motivación , Mutación , Obesidad/psicología , Receptor de Melanocortina Tipo 3/genética , Receptor de Melanocortina Tipo 3/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Recompensa
17.
Eur J Pharmacol ; 882: 173328, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32603692

RESUMEN

The novel coronavirus, later identified as SARS-CoV-2, originating from Wuhan in China in November 2019, quickly spread around the world becoming a pandemic. Despite the knowledge of previous coronaviruses, such as those responsible for the SARS and MERS-CoV epidemic, there is no drug or prophylaxis treatment to this day. The rapid succession of scientific findings on SARS-CoV-2 provides a significant number of potential drug targets. Nevertheless, at the same time, the high quantity of clinical data, generated by a large number of rapidly infected people, require accurate tests regarding effective medical treatments. Several in vitro and in vivo studies were rapidly initiated after the outbreak of the pandemic COVID-19. Initial clinical studies revealed the promising potential of remdesivir that demonstrated a powerful and specific in vitro antiviral activity for COVID-19. Promising effects appear to be attributable to hydroxychloroquine. Remdesivir and hydroxychloroquine are being tested in ongoing randomized trials. In contrast, oseltamivir was not effective and corticosteroids are not currently recommended. However, few data from ongoing clinical trials are identifying low molecular weight heparins, innate immune system stimulating agents, and inflammatory modulating agents as potential effective agents. The authors assume that the current pandemic will determine the need for a systematic approach based on big data analysis for identifying effective drugs to defeat SARS-Cov-2. This work is aimed to be a general reference point and to provide an overview as comprehensive as possible regarding the main clinical trials in progress at the moment.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Mediadores de Inflamación/farmacología , Neumonía Viral/tratamiento farmacológico , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Adyuvantes Inmunológicos/uso terapéutico , Alanina/análogos & derivados , Alanina/farmacología , Alanina/uso terapéutico , Antivirales/uso terapéutico , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Ensayos Clínicos como Asunto , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Heparina de Bajo-Peso-Molecular/farmacología , Heparina de Bajo-Peso-Molecular/uso terapéutico , Humanos , Hidroxicloroquina/farmacología , Hidroxicloroquina/uso terapéutico , Inmunidad Innata/efectos de los fármacos , Mediadores de Inflamación/uso terapéutico , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/virología , SARS-CoV-2 , Resultado del Tratamiento , Tratamiento Farmacológico de COVID-19
18.
Nutrients ; 12(5)2020 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397542

RESUMEN

Metabolic syndrome (MetS) is an association between obesity, dyslipidemia, hyperglycemia, hypertension, and insulin resistance. A relationship between MetS and vascular dementia was hypothesized. The purpose of this work is to investigate brain microanatomy alterations in obese Zucker rats (OZRs), as a model of MetS, compared to their counterparts lean Zucker rats (LZRs). 12-, 16-, and 20-weeks-old male OZRs and LZRs were studied. General physiological parameters and blood values were measured. Immunochemical and immunohistochemical techniques were applied to analyze the brain alterations. The morphology of nerve cells and axons, astrocytes and microglia were investigated. The blood-brain barrier (BBB) changes occurring in OZRs were assessed as well using aquaporin-4 (AQP4) and glucose transporter protein-1 (GLUT1) as markers. Body weight gain, hypertension, hyperglycemia, and hyperlipidemia were found in OZRs compared to LZRs. In the frontal cortex and hippocampus, a decrease of neurons was noticeable in the older obese rats in comparison to their age-matched lean counterparts. In OZRs, a reduction of neurofilament immunoreaction and gliosis was observed. The BBB of older OZRs revealed an increased expression of AQP4 likely related to the development of edema. A down-regulation of GLUT1 was found in OZRs of 12 weeks of age, whereas it increased in older OZRs. The behavioral analysis revealed cognitive alterations in 20-week-old OZRs. Based on these results, the OZRs may be useful for understanding the mechanisms through which obesity and related metabolic alterations induce neurodegeneration.


Asunto(s)
Envejecimiento/patología , Encéfalo/patología , Síndrome Metabólico/patología , Obesidad/patología , Animales , Astrocitos/patología , Axones/patología , Barrera Hematoencefálica/patología , Encéfalo/citología , Cognición , Modelos Animales de Enfermedad , Transportador de Glucosa de Tipo 1/metabolismo , Masculino , Síndrome Metabólico/metabolismo , Síndrome Metabólico/psicología , Microglía/patología , Enfermedades Neurodegenerativas/etiología , Neuronas/patología , Obesidad/metabolismo , Obesidad/psicología , Ratas Zucker
19.
Nutrients ; 12(5)2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32375317

RESUMEN

The accumulation of adipose tissue increases the risk of several diseases. The fruits-intake, containing phytochemicals, is inversely correlated with their development. This study evaluated the effects of anthocyanin-rich tart cherries in diet-induced obese (DIO) rats. DIO rats were exposed to a high-fat diet with the supplementation of tart cherry seeds powder (DS) and seed powder plus juice (DJS). After 17 weeks, the DIO rats showed an increase of body weight, glycaemia, insulin, and systolic blood pressure. In the DS and DJS groups, there was a decrease of systolic blood pressure, glycaemia, triglycerides, and thiobarbituric reactive substances in the serum. In the DJS rats, computed tomography revealed a decrease in the spleen-to-liver attenuation ratio. Indeed, sections of the DIO rats presented hepatic injury characterized by steatosis, which was lower in the supplemented groups. In the liver of the DIO compared with rats fed with a standard diet (CHOW), a down-regulation of the GRP94 protein expression and a reduction of LC3- II/LC3-I ratio were found, indicating endoplasmic reticulum stress and impaired autophagy flux. Interestingly, tart cherry supplementation enhanced both unfolded protein response (UPR) and autophagy. This study suggests that tart cherry supplementation, although it did not reduce body weight in the DIO rats, prevented its related risk factors and liver steatosis.


Asunto(s)
Antocianinas/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Hígado Graso/etiología , Hígado Graso/prevención & control , Jugos de Frutas y Vegetales , Obesidad/etiología , Obesidad/metabolismo , Fitoquímicos/administración & dosificación , Fitoterapia , Prunus avium , Semillas , Animales , Autofagia , Peso Corporal , Modelos Animales de Enfermedad , Regulación hacia Abajo , Estrés del Retículo Endoplásmico , Hígado Graso/metabolismo , Expresión Génica , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Pliegue de Proteína , Ratas Wistar
20.
Nutrients ; 12(3)2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32120798

RESUMEN

Evidence suggests that obesity adversely affects brain function. High body mass index, hypertension, dyslipidemia, insulin resistance, and diabetes are risk factors for increasing cognitive decline. Tart cherries (PrunusCerasus L.) are rich in anthocyanins and components that modify lipid metabolism. This study evaluated the effects of tart cherries on the brain in diet-induced obese (DIO) rats. DIO rats were fed with a high-fat diet alone or in association with a tart cherry seeds powder (DS) and juice (DJS). DIO rats were compared to rats fed with a standard diet (CHOW). Food intake, body weight, fasting glycemia, insulin, cholesterol, and triglycerides were measured. Immunochemical and immunohistochemical techniques were performed. Results showed that body weight did not differ among the groups. Blood pressure and glycemia were decreased in both DS and DJS groups when compared to DIO rats. Immunochemical and immunohistochemical techniques demonstrated that in supplemented DIO rats, the glial fibrillary acid protein expression and microglial activation were reduced in both the hippocampus and in the frontal cortex, while the neurofilament was increased. Tart cherry intake modified aquaporin 4 and endothelial inflammatory markers. These findings indicate the potential role of this nutritional supplement in preventing obesity-related risk factors, especially neuroinflammation.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Lóbulo Frontal , Jugos de Frutas y Vegetales , Hipocampo , Obesidad , Prunus avium , Semillas , Animales , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Obesidad/inducido químicamente , Obesidad/dietoterapia , Obesidad/metabolismo , Obesidad/patología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA