Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Gen Virol ; 105(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39045787

RESUMEN

Domestic dogs (Canis lupus familiaris) live with humans, frequently contact other animals and may serve as intermediary hosts for the transmission of viruses. Free-roaming dogs, which account for over 70% of the world's domestic dog population, may pose a particularly high risk in this regard. We conducted an epidemiological study of dog viromes in three locations in Uganda, representing low, medium and high rates of contact with wildlife, ranging from dogs owned specifically for traditional hunting in a biodiversity and disease 'hotspot' to pets in an affluent suburb. We quantified rates of contact between dogs and wildlife through owner interviews and conducted canine veterinary health assessments. We then applied broad-spectrum viral metagenomics to blood plasma samples, from which we identified 46 viruses, 44 of which were previously undescribed, in three viral families, Sedoreoviridae, Parvoviridae and Anelloviridae. All 46 viruses (100 %) occurred in the high-contact population of dogs compared to 63 % and 39 % in the medium- and low-contact populations, respectively. Viral prevalence ranged from 2.1 % to 92.0 % among viruses and was highest, on average, in the high-contact population (22.3 %), followed by the medium-contact (12.3 %) and low-contact (4.8 %) populations. Viral richness (number of viruses per dog) ranged from 0 to 27 and was markedly higher, on average, in the high-contact population (10.2) than in the medium-contact (5.7) or low-contact (2.3) populations. Viral richness was strongly positively correlated with the number of times per year that a dog was fed wildlife and negatively correlated with the body condition score, body temperature and packed cell volume. Viral abundance (cumulative normalized metagenomic read density) varied 124-fold among dogs and was, on average, 4.1-fold higher and 2.4-fold higher in the high-contact population of dogs than in the low-contact or medium-contact populations, respectively. Viral abundance was also strongly positively correlated with the number of times per year that a dog was fed wildlife, negatively correlated with packed cell volume and positively correlated with white blood cell count. These trends were driven by nine viruses in the family Anelloviridae, genus Thetatorquevirus, and by one novel virus in the family Sedoreoviridae, genus Orbivirus. The genus Orbivirus contains zoonotic viruses and viruses that dogs can acquire through ingestion of infected meat. Overall, our findings show that viral prevalence, richness and abundance increased across a gradient of contact between dogs and wildlife and that the health status of the dog modified viral infection. Other ecological, geographic and social factors may also have contributed to these trends. Our finding of a novel orbivirus in dogs with high wildlife contact supports the idea that free-roaming dogs may serve as intermediary hosts for viruses of medical importance to humans and other animals.


Asunto(s)
Animales Salvajes , Enfermedades de los Perros , Animales , Perros , Uganda/epidemiología , Enfermedades de los Perros/virología , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/transmisión , Prevalencia , Animales Salvajes/virología , Viroma , Virus/clasificación , Virus/aislamiento & purificación , Virus/genética , Metagenómica , Anelloviridae/genética , Anelloviridae/aislamiento & purificación , Anelloviridae/clasificación , Humanos , Virosis/epidemiología , Virosis/veterinaria , Virosis/transmisión , Virosis/virología
2.
J Infect Dis ; 222(6): 1027-1036, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32310272

RESUMEN

BACKGROUND: Persistent and relapsing babesiosis caused by Babesia microti often occurs in immunocompromised patients, and has been associated with resistance to antimicrobial agents such as atovaquone. Given the rising incidence of babesiosis in the United States, novel drugs are urgently needed. In the current study, we tested whether clofazimine (CFZ), an antibiotic used to treat leprosy and drug-resistant tuberculosis, is effective against B. microti. METHODS: Mice with severe combined immunodeficiency were infected with 107B. microti-infected erythrocytes. Parasites were detected by means of microscopic examination of Giemsa-stained blood smears or nested polymerase chain reaction. CFZ was administered orally. RESULTS: Uninterrupted monotherapy with CFZ curtailed the rise of parasitemia and achieved radical cure. B. microti parasites and B. microti DNA were cleared by days 10 and 50 of therapy, respectively. A 7-day administration of CFZ delayed the rise of parasitemia by 22 days. This rise was caused by B. microti isolates that did not carry mutations in the cytochrome b gene. Accordingly, a 14-day administration of CFZ was sufficient to resolve high-grade parasitemia caused by atovaquone-resistant B. microti parasites. CONCLUSIONS: Clofazimine is effective against B. microti infection in the immunocompromised host. Additional preclinical studies are required to identify the minimal dose and dosage of CFZ for babesiosis.


Asunto(s)
Babesia microti/efectos de los fármacos , Babesiosis/tratamiento farmacológico , Babesiosis/parasitología , Clofazimina/uso terapéutico , Huésped Inmunocomprometido , Leprostáticos/uso terapéutico , Secuencia de Aminoácidos , Animales , Babesia microti/genética , Babesia microti/inmunología , Babesiosis/inmunología , Clofazimina/administración & dosificación , Clofazimina/efectos adversos , Citocromos b/química , Citocromos b/genética , ADN Protozoario , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Resistencia a Medicamentos , Eritrocitos/parasitología , Leprostáticos/administración & dosificación , Leprostáticos/efectos adversos , Ratones , Parasitemia/parasitología , Resultado del Tratamiento
3.
Transbound Emerg Dis ; 67(5): 2233-2239, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32166838

RESUMEN

Bovine babesiosis represents a serious threat to the cattle industry in the tropics and subtropics. Although several Babesia species infect cattle, only B. bovis, B. bigemina and B. divergens are known to cause clinical babesiosis. However, our recent study demonstrated that the newly discovered Babesia sp. Mymensingh might be a virulent species capable of causing clinical babesiosis in cattle. The objective of this study was to determine the host range and geographical distribution of Babesia sp. Mymensingh on a global scale. A total of 2,860 archived DNA samples from 2,263 cattle in Sri Lanka (n = 672), the Philippines (n = 408), Vietnam (n = 460), Uganda (n = 409), Brazil (n = 164) and Argentina (n = 150); 419 buffalo in Sri Lanka (n = 327) and Vietnam (n = 92); and 127 goats and 51 sheep in Vietnam were screened using a Babesia sp. Mymensingh-specific PCR assay. Babesia sp. Mymensingh infection was detected in cattle, buffalo, sheep and goats. Cattle of all countries surveyed in this study except Brazil were found to be infected with Babesia sp. Mymensingh. The highest positive rates were recorded in cattle from the Philippines (11.3%) and Vietnam (9.6%), followed by Argentina (4.7%), Sri Lanka (1.5%) and Uganda (1.0%). Buffalo were found to be infected with this parasite in Sri Lanka (1.2%) and Vietnam (10.9%). Unexpectedly, Babesia sp. Mymensingh was also detected in sheep (2.0%) and goats (1.3%) from Vietnam. These findings were confirmed by PCR amplicon sequencing. In conclusion, our present findings indicate that Babesia sp. Mymensingh, which infects cattle, buffalo, sheep and goats, is endemic in Asia, Africa and South America.

4.
Int J Vet Sci Med ; 5(2): 168-174, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30255067

RESUMEN

Cattle and poultry enterprises are among the major contributors to food security and socioeconomic empowerment of households in Uganda. However, various diseases constrain their productivity. A two-year retrospective study between April 2012 and March 2014 was conducted using records for cattle and poultry diseases diagnosed at the Central Diagnostic Laboratory (CDL) to determine prevalent diseases in Uganda. The laboratory received 836 samples from poultry (36.3%) and cattle (63.7%). Of the 836 samples, 47.5% had a definitive diagnosis of disease causation. Most of the cattle and poultry diseases diagnosed were protozoan diseases (39.3%) followed by bacterial (21.4%), viral (17.1%), helminthiasis (11.1%), nutritional diseases (4%) and others (7.1%). For poultry, viral diseases (29.5%) and protozoan diseases (27.1%) especially newcastle disease (44.3%) and coccidiosis (100%) respectively, were the most diagnosed. While for cattle, hemo-protozoan parasites (52.1%) were the most prevalent, of which 92.9% were east coast fever infection. Bacterial infection (20.5%) in cattle were the second most diagnosed diseases and mastitis was the most diagnosed (46.2%). In summary, coccidioisis, collibacillosis, newcastle disease, gumboro disease, and avian helminthiasis were the most prevalent poultry diseases while in cattle, east coast fever, helminthiasis, mastitis, brucellosis and rabies were the most frequently diagnosed diseases. This study has identified the major diseases that hinder poultry and cattle production in Uganda. The data generated by CDL could be used for surveillance, monitoring and designing strategic interventions for control of poultry and cattle diseases in Uganda.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...