Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(9): 1987-1995.e4, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38614081

RESUMEN

The anterior cingulate cortex (ACC) is critical for the perception and unpleasantness of pain.1,2,3,4,5,6 It receives nociceptive information from regions such as the thalamus and amygdala and projects to several cortical and subcortical regions of the pain neuromatrix.7,8 ACC hyperexcitability is one of many functional changes associated with chronic pain, and experimental activation of ACC pyramidal cells produces hypersensitivity to innocuous stimuli (i.e., allodynia).9,10,11,12,13,14 A less-well-studied projection to the ACC arises from a small forebrain region, the claustrum.15,16,17,18,19,20 Stimulation of excitatory claustrum projection neurons preferentially activates GABAergic interneurons, generating feed-forward inhibition onto excitatory cortical networks.21,22,23,24 Previous work has shown that claustrocingulate projections display altered activity in prolonged pain25,26,27; however, it remains unclear whether and how the claustrum participates in nociceptive processing and high-order pain behaviors. Inhibition of ACC activity reverses mechanical allodynia in animal models of persistent and neuropathic pain,1,9,28 suggesting claustrum inputs may function to attenuate pain processing. In this study, we sought to define claustrum function in acute and chronic pain. We found enhanced claustrum activity after a painful stimulus that was attenuated in chronic inflammatory pain. Selective inhibition of claustrocingulate projection neurons enhanced acute nociception but blocked pain learning. Inversely, chemogenetic activation of claustrocingulate neurons had no effect on basal nociception but rescued inflammation-induced mechanical allodynia. Together, these results suggest that claustrocingulate neurons are a critical component of the pain neuromatrix, and dysregulation of this connection may contribute to chronic pain.


Asunto(s)
Claustro , Giro del Cíngulo , Animales , Giro del Cíngulo/fisiología , Giro del Cíngulo/fisiopatología , Claustro/fisiología , Ratones , Masculino , Nocicepción/fisiología , Vías Nerviosas/fisiopatología , Vías Nerviosas/fisiología , Ratones Endogámicos C57BL , Dolor/fisiopatología
2.
Brain Behav Immun ; 114: 80-93, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37544463

RESUMEN

Decades of research into chronic pain has deepened our understanding of the cellular mechanisms behind this process. However, a failure to consider the biological variable of sex has limited the application of these breakthroughs into clinical application. In the present study, we investigate fundamental differences in chronic pain between male and female mice resulting from inflammatory activation of the innate immune system. We provide evidence that female mice are more sensitive to the effects of macrophages. Injecting small volumes of media conditioned by either unstimulated macrophages or macrophages stimulated by the inflammatory molecule TNFα lead to increased pain sensitivity only in females. Interestingly, we find that TNFα conditioned media leads to a more rapid resolution of mechanical hypersensitivity and altered immune cell recruitment to sites of injury. Furthermore, male and female macrophages exhibit differential polarization characteristics and motility after TNFα stimulation, as well as a different profile of cytokine secretions. Finally, we find that the X-linked gene Tlr7 is critical in the facilitating the adaptive resolution of pain in models of acute and chronic inflammation in both sexes. Altogether, these findings suggest that although the cellular mechanisms of pain resolution may differ between the sexes, the study of these differences may yield more targeted approaches with clinical applications.

3.
Neuropharmacology ; 233: 109546, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37068603

RESUMEN

Opioid addiction is characterized by adaptations in the mesolimbic dopamine system that occur during chronic opioid use. Alterations in dopaminergic transmission contribute to pathological drug-seeking behavior and other symptoms associated with opioid withdrawal following drug discontinuation, making drug abstinence challenging and contributing to high rates of relapse among those suffering from substance use disorder. Recently, the use of dopamine partial agonists has been proposed as a potential strategy to restore dopaminergic signalling during drug withdrawal, while avoiding the adverse side effects associated with stronger modulators of dopaminergic transmission. We investigated the effects of the atypical antipsychotic brexpiprazole, which is a partial agonist at dopamine D2 and D3 receptors, in a mouse model of opioid dependence. The development of opioid dependence in mice is characterized by locomotor sensitization, analgesic tolerance, opioid-induced hyperalgesia, and drug-seeking behavior. We set up four paradigms to model the effects of brexpiprazole on each of these adaptations that occur during chronic opioid use in male and female C57BL/6J mice. Concomitant treatment of brexpiprazole during chronic morphine administration attenuated the development of locomotor sensitization. Brexpiprazole treatment abolished morphine place preference and blocked reinstatement of this behavior following extinction. Brexpiprazole treatment did not alter morphine analgesia, nor did it impact the development of morphine tolerance. However, brexpiprazole treatment did prevent the expression of opioid-induced hyperalgesia in a tail-withdrawal assay, while failing to improve somatic withdrawal symptoms. Altogether, these results provide preclinical evidence for the efficacy of brexpiprazole as a modulator of dopamine-dependent behaviors during opioid use and withdrawal.


Asunto(s)
Antipsicóticos , Trastornos Relacionados con Opioides , Síndrome de Abstinencia a Sustancias , Ratones , Masculino , Femenino , Animales , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Dopamina , Analgésicos Opioides/farmacología , Hiperalgesia , Ratones Endogámicos C57BL , Morfina , Agonistas de Dopamina/farmacología , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico
4.
Pain ; 163(1): e49-e61, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33863858

RESUMEN

ABSTRACT: Chronic pain is a highly prevalent symptom associated with the autoimmune disorder multiple sclerosis (MS). The central nucleus of the amygdala plays a critical role in pain processing and modulation. Neuropathic pain alters nociceptive signaling in the central amygdala, contributing to pain chronicity and opioid tolerance. Here, we demonstrate that activated microglia within the central amygdala disrupt nociceptive sensory processing and contribute to pain hypersensitivity in experimental autoimmune encephalomyelitis (EAE), the most frequently used animal model of MS. Male and female mice with EAE exhibited differences in microglial morphology in the central amygdala, which was associated with heat hyperalgesia, impaired morphine reward, and reduced morphine antinociception in females. Animals with EAE displayed a lack of morphine-evoked activity in cells expressing somatostatin within the central amygdala, which drive antinociception. Induction of focal microglial activation in naïve mice via injection of lipopolysaccharide into the central amygdala produced a loss of morphine analgesia in females, similar to as observed in EAE animals. Our data indicate that activated microglia within the central amygdala may contribute to the sexually dimorphic effects of morphine and may drive neuronal adaptations that lead to pain hypersensitivity in EAE. Our results provide a possible mechanism underlying the decreased efficacy of opioid analgesics in the management of MS-related pain, identifying microglial activation as a potential therapeutic target for pain symptoms in this patient population.


Asunto(s)
Analgesia , Núcleo Amigdalino Central , Encefalomielitis Autoinmune Experimental , Neuralgia , Analgésicos Opioides/uso terapéutico , Animales , Tolerancia a Medicamentos , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/complicaciones , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Femenino , Humanos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Inflamación , Masculino , Ratones , Morfina/uso terapéutico , Neuralgia/tratamiento farmacológico , Neuralgia/etiología
5.
J Neurosci Res ; 100(1): 19-34, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830380

RESUMEN

The actions of endogenous opioids and nociceptin/orphanin FQ are mediated by four homologous G protein-coupled receptors that constitute the opioid receptor family. However, little is known about opioid systems in cyclostomes (living jawless fish) and how opioid systems might have evolved from invertebrates. Here, we leveraged de novo transcriptome and low-coverage whole-genome assembly in the Pacific hagfish (Eptatretus stoutii) to identify and characterize the first full-length coding sequence for a functional opioid receptor in a cyclostome. Additionally, we define two novel endogenous opioid precursors in this species that predict several novel opioid peptides. Bioinformatic analysis shows no closely related opioid receptor genes in invertebrates with regard either to the genomic organization or to conserved opioid receptor-specific sequences that are common in all vertebrates. Furthermore, no proteins analogous to vertebrate opioid precursors could be identified by genomic searches despite previous claims of protein or RNA-derived sequences in several invertebrate species. The presence of an expressed orthologous receptor and opioid precursors in the Pacific hagfish confirms that a functional opioid system was likely present in the common ancestor of all extant vertebrates some 550 million years ago, earlier than all previous authenticated accounts. We discuss the premise that the cyclostome and vertebrate opioid systems evolved from invertebrate systems concerned with antimicrobial defense and speculate that the high concentrations of opioid precursors in tissues such as the testes, gut, and activated immune cells are key remnants of this evolutionary role.


Asunto(s)
Anguila Babosa , Analgésicos Opioides , Animales , Evolución Biológica , Evolución Molecular , Anguila Babosa/genética , Péptidos Opioides , Filogenia
6.
J Neurosci Res ; 100(1): 183-190, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32731302

RESUMEN

Kappa opioid receptor (KOR) agonists produce robust analgesia with minimal abuse liability and are considered promising pharmacological agents to manage chronic pain and itch. The KOR system is also notable for robust differences between the sexes, with females exhibiting lower analgesic response than males. Sexually dimorphic traits can be due to either the influence of gonadal hormones during development or adulthood, or due to the complement of genes expressed on the X or Y chromosome. Previous studies examining sex differences in KOR antinociception have relied on surgical or pharmacological manipulation of the gonads to determine whether sex hormones influence KOR function. While there are conflicting reports whether gonadal hormones influence KOR function, no study has examined these effects in context with sex chromosomes. Here, we use two genetic mouse models, the four core genotypes and XY*, to isolate the chromosomal and hormonal contributions to sex differences in KOR analgesia. Mice were treated with systemic KOR agonist (U50,488H) and thermal analgesia measured in the tail withdrawal assay. We found that KOR antinociception was influenced predominantly by the number of the X chromosomes. These data suggest that the dose and/or parental imprint on X gene(s) contribute significantly to the sexually dimorphism in KOR analgesia.


Asunto(s)
Analgesia , Receptores Opioides kappa , Analgésicos Opioides/farmacología , Animales , Femenino , Masculino , Ratones , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/genética , Caracteres Sexuales , Cromosoma X
7.
Front Neurosci ; 15: 741503, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34602975

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammation, neuronal degeneration and demyelinating lesions within the central nervous system. The mechanisms that underlie the pathogenesis and progression of MS are not fully known and current therapies have limited efficacy. Preclinical investigations using the murine experimental autoimmune encephalomyelitis (EAE) model of MS, as well as clinical observations in patients with MS, provide converging lines of evidence implicating the endogenous opioid system in the pathogenesis of this disease. In recent years, it has become increasingly clear that endogenous opioid peptides, binding µ- (MOR), κ- (KOR) and δ-opioid receptors (DOR), function as immunomodulatory molecules within both the immune and nervous systems. The endogenous opioid system is also well known to play a role in the development of chronic pain and negative affect, both of which are common comorbidities in MS. As such, dysregulation of the opioid system may be a mechanism that contributes to the pathogenesis of MS and associated symptoms. Here, we review the evidence for a connection between the endogenous opioid system and MS. We further explore the mechanisms by which opioidergic signaling might contribute to the pathophysiology and symptomatology of MS.

8.
Mol Pharmacol ; 98(4): 433-444, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32958571

RESUMEN

For decades the broad role of opioids in addiction, neuropsychiatric disorders, and pain states has been somewhat well established. However, in recent years, with the rise of technological advances, not only is the existing dogma being challenged, but we are identifying new disease areas in which opioids play a critical role. This review highlights four new areas of exploration in the opioid field. The most recent addition to the opioid family, the nociceptin receptor system, shows promise as the missing link in understanding the neurocircuitry of motivation. It is well known that activation of the kappa opioid receptor system modulates negative affect and dysphoria, but recent studies now implicate the kappa opioid system in the modulation of negative affect associated with pain. Opioids are critical in pain management; however, the often-forgotten delta opioid receptor system has been identified as a novel therapeutic target for headache disorders and migraine. Lastly, changes to the gut microbiome have been shown to directly contribute to many of the symptoms of chronic opioid use and opioid related behaviors. This review summarizes the findings from each of these areas with an emphasis on identifying new therapeutic targets. SIGNIFICANCE STATEMENT: The focus of this minireview is to highlight new disease areas or new aspects of disease in which opioids have been implicated; this includes pain, motivation, migraine, and the microbiome. In some cases, this has resulted in the pursuit of a novel therapeutic target and resultant clinical trial. We believe this is very timely and will be a refreshing take on reading about opioids and disease.


Asunto(s)
Analgésicos Opioides/farmacología , Trastornos Migrañosos/metabolismo , Trastornos Relacionados con Opioides/microbiología , Dolor/metabolismo , Receptores Opioides/metabolismo , Analgésicos Opioides/uso terapéutico , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Trastornos Migrañosos/tratamiento farmacológico , Motivación , Trastornos Relacionados con Opioides/metabolismo , Dolor/tratamiento farmacológico , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor de Nociceptina
9.
Steroids ; 164: 108725, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32890578

RESUMEN

Lipids present in lipoproteins cleared from the circulation are processed sequentially by three major proteins within the late endosomal/lysosomal (E/L) compartment of all cells: lysosomal acid lipase (LAL), Niemann-Pick (NPC) C2 and NPC1. When all three of these proteins are functioning normally, unesterified cholesterol (UC) exits the E/L compartment and is used in plasma membrane maintenance and various pathways in the endoplasmic reticulum including esterification by sterol O-acyltransferase 2 (SOAT2) or SOAT1 depending partly on cell type. Mutations in either NPC2 or NPC1 result in continual entrapment of UC and glycosphingolipids leading to neurodegeneration, pulmonary dysfunction, splenomegaly and liver damage. To date, the most effective agent for promoting release of entrapped UC in nearly all organs of NPC1-deficient mice and cats is 2-hydroxypropyl-ß-cyclodextrin (2HPßCD). The cytotoxic nature of the liberated UC triggers various defenses including suppression of sterol synthesis and increased esterification. The present studies, using the Npc1-/-nih mouse model, measured the comparative quantitative importance of these two responses in the liver versus the spleen of Npc1-/-: Soat2+/+ and Npc1-/-: Soat2-/- mice in the 24 h following a single acute treatment with 2HPßCD. In the liver but not the spleen of both types of mice suppression of synthesis alone or in combination with increased esterification provided the major defense against the rise in unsequestered cellular UC content. These findings have implications for systemic 2HPßCD treatment in NPC1 patients in view of the purportedly low levels of SOAT2 activity in human liver.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/farmacología , Colesterol/metabolismo , Proteína Niemann-Pick C1/genética , Esterol O-Aciltransferasa/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/administración & dosificación , Animales , Hígado/enzimología , Ratones , Ratones Endogámicos BALB C , Esterol O-Aciltransferasa/genética , Esterol O-Aciltransferasa 2
10.
eNeuro ; 7(5)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32859725

RESUMEN

µ-Opioid receptors (MORs) are densely expressed in different brain regions known to mediate reward. One such region is the striatum where MORs are densely expressed, yet the role of these MOR populations in modulating reward is relatively unknown. We have begun to address this question by using a series of genetically engineered mice based on the Cre recombinase/loxP system to selectively delete MORs from specific neurons enriched in the striatum: dopamine 1 (D1) receptors, D2 receptors, adenosine 2a (A2a) receptors, and choline acetyltransferase (ChAT). We first determined the effects of each deletion on opioid-induced locomotion, a striatal and dopamine-dependent behavior. We show that MOR deletion from D1 neurons reduced opioid (morphine and oxycodone)-induced hyperlocomotion, whereas deleting MORs from A2a neurons resulted in enhanced opioid-induced locomotion, and deleting MORs from D2 or ChAT neurons had no effect. We also present the effect of each deletion on opioid intravenous self-administration. We first assessed the acquisition of this behavior using remifentanil as the reinforcing opioid and found no effect of genotype. Mice were then transitioned to oxycodone as the reinforcer and maintained here for 9 d. Again, no genotype effect was found. However, when mice underwent 3 d of extinction training, during which the drug was not delivered, but all cues remained as during the maintenance phase, drug-seeking behavior was enhanced when MORs were deleted from A2a or ChAT neurons. These findings show that these selective MOR populations play specific roles in reward-associated behaviors.


Asunto(s)
Analgésicos Opioides , Receptores Opioides mu , Analgésicos Opioides/farmacología , Animales , Ratones , Morfina , Neuronas , Receptores Opioides mu/genética , Recompensa
11.
Neurobiol Pain ; 7: 100045, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32072077

RESUMEN

Globally, it is estimated that one in five people suffer from chronic pain, with prevalence increasing with age. The pathophysiology of chronic pain encompasses complex sensory, immune, and inflammatory interactions within both the central and peripheral nervous systems. Microglia, the resident macrophages of the central nervous system (CNS), are critically involved in the initiation and persistence of chronic pain. Microglia respond to local signals from the CNS but are also modulated by signals from the gastrointestinal tract. Emerging data from preclinical and clinical studies suggest that communication between the gut microbiome, the community of bacteria residing within the gut, and microglia is involved in producing chronic pain. Targeted strategies that manipulate or restore the gut microbiome have been shown to reduce microglial activation and alleviate symptoms associated with inflammation. These data indicate that manipulations of the gut microbiome in chronic pain patients might be a viable strategy in improving pain outcomes. Herein, we discuss the evidence for a connection between microglia and the gut microbiome and explore the mechanisms by which commensal bacteria might influence microglial reactivity to drive chronic pain.

12.
Dig Dis Sci ; 65(1): 158-167, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31312996

RESUMEN

BACKGROUND: Mutations in the NPC1 gene result in sequestration of unesterified cholesterol (UC) and glycosphingolipids in most tissues leading to multi-organ disease, especially in the brain, liver, lungs, and spleen. Various data from NPC1-deficient mice suggest the small intestine (SI) is comparatively less affected, even in late stage disease. METHODS: Using the Npc1nih mouse model, we measured SI weights and total cholesterol (TC) levels in Npc1-/- versus Npc1+/+ mice as a function of age, and then after prolonged ezetimibe-induced inhibition of cholesterol absorption. Next, we determined intestinal levels of UC and esterified cholesterol (EC), and cholesterol synthesis rates in Npc1-/- and Npc1+/+ mice, with and without the cholesterol-esterifying enzyme SOAT2, following a once-only subcutaneous injection with 2-hydroxypropyl-ß-cyclodextrin (2HPßCD). RESULTS: By ~ 42 days of age, intestinal TC levels averaged ~ 2.1-fold more (mostly UC) in the Npc1-/- versus Npc1+/+ mice with no further increase thereafter. Chronic ezetimibe treatment lowered intestinal TC levels in the Npc1-/- mice by only ~ 16%. In Npc1-/- mice given 2HPßCD 24 h earlier, UC levels fell, EC levels increased (although less so in mice lacking SOAT2), and cholesterol synthesis was suppressed equally in the Npc1-/-:Soat2+/+ and Npc1-/-:Soat2-/- mice. CONCLUSIONS: The low and static levels of intestinal UC sequestration in Npc1-/- mice likely reflect the continual sloughing of cells from the mucosa. This sequestration is blunted by about the same extent following a single acute treatment with 2HPßCD as it is by a prolonged ezetimibe-induced block of cholesterol absorption.


Asunto(s)
Colesterol/metabolismo , Absorción Intestinal , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Enfermedad de Niemann-Pick Tipo C/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , Animales , Modelos Animales de Enfermedad , Ezetimiba/farmacología , Femenino , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Esterol O-Aciltransferasa/genética , Esterol O-Aciltransferasa/metabolismo , Esterol O-Aciltransferasa 2
13.
J Neurosci ; 39(21): 4162-4178, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30862664

RESUMEN

Pain is a multidimensional experience and negative affect, or how much the pain is "bothersome", significantly impacts the sufferers' quality of life. It is well established that the κ opioid system contributes to depressive and dysphoric states, but whether this system contributes to the negative affect precipitated by the occurrence of chronic pain remains tenuous. Using a model of persistent pain, we show by quantitative real-time-PCR, florescence in situ hybridization, Western blotting and GTPgS autoradiography an upregulation of expression and the function of κ opioid receptors (KORs) and its endogenous ligand dynorphin in the mesolimbic circuitry in animals with chronic pain compared with surgical controls. Using in vivo microdialysis and microinjection of drugs into the mesolimbic dopamine system, we demonstrate that inhibiting KORs reinstates evoked dopamine release and reward-related behaviors in chronic pain animals. Chronic pain enhanced KOR agonist-induced place aversion in a sex-dependent manner. Using various place preference paradigms, we show that activation of KORs drives pain aversive states in male but not female mice. However, KOR antagonist treatment was effective in alleviating anxiogenic and depressive affective-like behaviors in both sexes. Finally, ablation of KORs from dopamine neurons using AAV-TH-cre in KORloxP mice prevented pain-induced aversive states as measured by place aversion assays. Our results strongly support the use of KOR antagonists as therapeutic adjuvants to alleviate the emotional, tonic-aversive component of chronic pain, which is argued to be the most significant component of the pain experience that impacts patients' quality of life.SIGNIFICANCE STATEMENT We show that KORs are sufficient to drive the tonic-aversive component of chronic pain; the emotional component of pain that is argued to significantly impact a patient's quality of life. The impact of our study is broadly relevant to affective disorders associated with disruption of reward circuitry and thus likely contributes to many of the devastating sequelae of chronic pain, including the poor response to treatment of many patients, debilitating affective disorders (other disorders including anxiety and depression that demonstrate high comorbidity with chronic pain) and substance abuse. Indeed, coexisting psychopathology increases pain intensity, pain-related disability and effectiveness of treatments (Jamison and Edwards, 2013).


Asunto(s)
Dolor Crónico/metabolismo , Dolor Crónico/psicología , Emociones/fisiología , Percepción del Dolor/fisiología , Receptores Opioides kappa/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Long-Evans
15.
Neuropsychopharmacology ; 43(13): 2606-2614, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30258112

RESUMEN

Opioid use for long-term pain management is limited by adverse side effects, such as hyperalgesia and negative affect. Neuroinflammation in the brain and spinal cord is a contributing factor to the development of symptoms associated with chronic opioid use. Recent studies have described a link between neuroinflammation and behavior that is mediated by a gut-brain signaling axis, where alterations in indigenous gut bacteria contribute to several inflammation-related psychopathologies. As opioid receptors are highly expressed within the digestive tract and opioids influence gut motility, we hypothesized that systemic opioid treatment will impact the composition of the gut microbiota. Here, we explored how opioid treatments, and cessation, impacts the mouse gut microbiome and whether opioid-induced changes in the gut microbiota influences inflammation-driven hyperalgesia and impaired reward behavior. Male C57Bl6/J mice were treated with either intermittent or sustained morphine. Using 16S rDNA sequencing, we describe changes in gut microbiota composition following different morphine regimens. Manipulation of the gut microbiome was used to assess the causal relationship between the gut microbiome and opioid-dependent behaviors. Intermittent, but not sustained, morphine treatment was associated with microglial activation, hyperalgesia, and impaired reward response. Depletion of the gut microbiota via antibiotic treatment surprisingly recapitulated neuroinflammation and sequelae, including reduced opioid analgesic potency and impaired cocaine reward following intermittent morphine treatment. Colonization of antibiotic-treated mice with a control microbiota restored microglial activation state and behaviors. Our findings suggest that differing opioid regimens uniquely influence the gut microbiome that is causally related to behaviors associated with opioid dependence.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Absorción Intestinal/fisiología , Dependencia de Morfina/metabolismo , Dependencia de Morfina/psicología , Morfina/administración & dosificación , Recompensa , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/efectos adversos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Absorción Intestinal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Morfina/efectos adversos
16.
Neuron ; 99(6): 1170-1187.e9, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30174118

RESUMEN

Astrocytes tile the central nervous system, but their functions in neural microcircuits in vivo and their roles in mammalian behavior remain incompletely defined. We used two-photon laser scanning microscopy, electrophysiology, MINIscopes, RNA-seq, and a genetic approach to explore the effects of reduced striatal astrocyte Ca2+ signaling in vivo. In wild-type mice, reducing striatal astrocyte Ca2+-dependent signaling increased repetitive self-grooming behaviors by altering medium spiny neuron (MSN) activity. The mechanism involved astrocyte-mediated neuromodulation facilitated by ambient GABA and was corrected by blocking astrocyte GABA transporter 3 (GAT-3). Furthermore, in a mouse model of Huntington's disease, dysregulation of GABA and astrocyte Ca2+ signaling accompanied excessive self-grooming, which was relieved by blocking GAT-3. Assessments with RNA-seq revealed astrocyte genes and pathways regulated by Ca2+ signaling in a cell-autonomous and non-cell-autonomous manner, including Rab11a, a regulator of GAT-3 functional expression. Thus, striatal astrocytes contribute to neuromodulation controlling mouse obsessive-compulsive-like behavior.


Asunto(s)
Astrocitos/metabolismo , Conducta Animal/fisiología , Calcio/metabolismo , Enfermedad de Huntington/genética , Animales , Señalización del Calcio/fisiología , Cuerpo Estriado/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Humanos , Ratones Transgénicos , Neuronas/fisiología
17.
eNeuro ; 5(3)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29963618

RESUMEN

Nodes of Ranvier are unique regions where voltage-gated sodium channels are highly enriched to drive saltatory conduction. Genetic ablations in adult mice with loss of specific nodal proteins causes slow but progressive nodal deterioration associated with decreased nerve conduction and axonopathy. What has remained unaddressed is whether loss of nodal proteins at different time points in postnatal life follows similar timelines of nodal disorganization. Here we utilized simultaneous ablation of Neurofascin (NF186) and Ankyrin G (AnkG) in mice of both sexes at three specific time points. We report that concurrent ablation of these core nodal components at postnatal day 13 (P13) leads to accelerated nodal destabilization in comparison with P23, and this disorganization is even slower when ablated at P93. Ablation of NF186 with AnkG at P13 reduced the half-life of NF186 to 15 days compared to 1 month at P23, which increased to 2 months at P93, indicating increasing nodal stability. The half-life of AnkG at the nodes also increased with age but showed enhanced disappearance from the node in the absence of NF186, with a half-life of 3 days at P13 ablation. The nodal disorganization occurred in a sequential manner, with AnkG disappearing first from the nodal areas irrespective of the timing of ablation, and led to decreased nerve conduction and affected axonal health. Together, our studies reveal that nodes of Ranvier in myelinated axons continue to become more stable with age and suggest that nodal disorganization in adult human demyelinating disorders occurs slowly until neurological symptoms become evident.


Asunto(s)
Ancirinas/metabolismo , Axones/metabolismo , Moléculas de Adhesión Celular/metabolismo , Longevidad , Vaina de Mielina/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Nódulos de Ranvier/metabolismo , Animales , Axones/ultraestructura , Femenino , Masculino , Ratones , Ratones Noqueados , Vaina de Mielina/ultraestructura , Conducción Nerviosa , Canales de Sodio/metabolismo , Espectrina/metabolismo
18.
J Neurochem ; 147(3): 395-408, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30025158

RESUMEN

Myelinated axons segregate the axonal membrane into four defined regions: the node of Ranvier, paranode, juxtaparanode, and internode. The paranodal junction consists of specific component proteins, such as neurofascin155 (NF155) on the glial side, and Caspr and Contactin on the axonal side. Although paranodal junctions are thought to play crucial roles in rapid saltatory conduction and nodal assembly, the role of their interaction with neurons is not fully understood. In a previous study, conditional NF155 knockout in oligodendrocytes led to disorganization of the paranodal junctions. To examine if disruption of paranodal junctions affects neuronal gene expression, we prepared total RNA from the retina of NF155 conditional knockout, and performed expression analysis. We found that the expression level of 433 genes changed in response to paranodal junction ablation. Interestingly, expression of aquaporin 3 (AQP3) was significantly reduced in NF155 conditional knockout mice, but not in cerebroside sulfotransferase knockout (CST-KO) mice, whose paranodes are not originally formed during development. Copy number variations have an important role in the etiology of schizophrenia (SCZ). We observed rare duplications of AQP3 in SCZ patients, suggesting a correlation between abnormal AQP3 expression and SCZ. To determine if AQP3 over-expression in NF155 conditional knockout mice influences neuronal function, we performed adeno-associated virus (AAV)-mediated over-expression of AQP3 in the motor cortex of mice and found a significant increase in caspase 3-dependent neuronal apoptosis in AQP3-transduced cells. This study may provide new insights into therapeutic approaches for SCZ by regulating AQP3 expression, which is associated with paranodal disruption.


Asunto(s)
Acuaporina 3/metabolismo , Neuronas/metabolismo , Esquizofrenia/metabolismo , Animales , Axones/metabolismo , Axones/patología , Caspasa 3/genética , Caspasa 3/metabolismo , Moléculas de Adhesión Celular/biosíntesis , Moléculas de Adhesión Celular/genética , Supervivencia Celular , Variaciones en el Número de Copia de ADN , Dependovirus/genética , Femenino , Duplicación de Gen , Expresión Génica , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Corteza Motora/metabolismo , Factores de Crecimiento Nervioso/biosíntesis , Factores de Crecimiento Nervioso/genética , Neuronas/patología , Esquizofrenia/patología
19.
Prog Neuropsychopharmacol Biol Psychiatry ; 87(Pt B): 263-268, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28501595

RESUMEN

The transition from acute to chronic pain is accompanied by increased engagement of emotional and motivational circuits. Adaptations within this corticolimbic circuitry contribute to the cellular and behavioral maladaptations associated with chronic pain. Central regions within the corticolimbic brain include the mesolimbic dopamine system, the amygdala, and the medial prefrontal cortex. The evidence reviewed herein supports the notion that chronic pain induces significant changes within these corticolimbic regions that contribute to the chronicity and intractability of pain. In addition, pain-induced changes in corticolimbic circuitry are poised to impact motivated behavior and reward responsiveness to environmental stimuli, and may modulate the addiction liability of drugs of abuse, such as opioids.


Asunto(s)
Corteza Cerebral/fisiopatología , Dolor Crónico/patología , Sistema Límbico/fisiopatología , Vías Nerviosas/fisiopatología , Trastornos Relacionados con Sustancias/patología , Animales , Corteza Cerebral/patología , Dolor Crónico/psicología , Emociones/fisiología , Humanos , Sistema Límbico/patología , Motivación/fisiología , Trastornos Relacionados con Sustancias/psicología
20.
Curr Biol ; 27(17): 2692-2697.e3, 2017 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-28844642

RESUMEN

Why do distantly related mammals like sheep, giant pandas, and fur seals produce bleats that are characterized by vibrato-like fundamental frequency (F0) modulation? To answer this question, we used psychoacoustic tests and comparative analyses to investigate whether this distinctive vocal feature has evolved to improve the perception of formants, key acoustic components of animal calls that encode important information about the caller's size and identity [1]. Psychoacoustic tests on humans confirmed that vibrato-like F0 modulation improves the ability of listeners to detect differences in the formant patterns of synthetic bleat-like stimuli. Subsequent phylogenetically controlled comparative analyses revealed that vibrato-like F0 modulation has evolved independently in six mammalian orders in vocal signals with relatively high F0 and, therefore, low spectral density (i.e., less harmonic overtones). We also found that mammals modulate the vibrato in these calls over greater frequency extents when the number of harmonic overtones per formant is low, suggesting that this is a mechanism to improve formant perception in calls with low spectral density. Our findings constitute the first evidence that formant perception in non-speech sounds is improved by fundamental frequency modulation and provide a mechanism for the convergent evolution of bleat-like calls in mammals. They also indicate that selection pressures for animals to transmit important information encoded by formant frequencies (on size and identity, for example) are likely to have been a key driver in the evolution of mammal vocal diversity.


Asunto(s)
Percepción Auditiva , Acústica , Adolescente , Femenino , Humanos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...