Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
EMBO J ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907033

RESUMEN

Cell polarity networks are defined by quantitative features of their constituent feedback circuits, which must be tuned to enable robust and stable polarization, while also ensuring that networks remain responsive to dynamically changing cellular states and/or spatial cues during development. Using the PAR polarity network as a model, we demonstrate that these features are enabled by the dimerization of the polarity protein PAR-2 via its N-terminal RING domain. Combining theory and experiment, we show that dimer affinity is optimized to achieve dynamic, selective, and cooperative binding of PAR-2 to the plasma membrane during polarization. Reducing dimerization compromises positive feedback and robustness of polarization. Conversely, enhanced dimerization renders the network less responsive due to kinetic trapping of PAR-2 on internal membranes and reduced sensitivity of PAR-2 to the anterior polarity kinase, aPKC/PKC-3. Thus, our data reveal a key role for a dynamically oligomeric RING domain in optimizing interaction affinities to support a robust and responsive cell polarity network, and highlight how optimization of oligomerization kinetics can serve as a strategy for dynamic and cooperative intracellular targeting.

2.
Sci Robot ; 9(91): eadi8808, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924419

RESUMEN

Existing robotic systems have a tension between generality and precision. Deployed solutions for robotic manipulation tend to fall into the paradigm of one robot solving a single task, lacking "precise generalization," or the ability to solve many tasks without compromising on precision. This paper explores solutions for precise and general pick and place. In precise pick and place, or kitting, the robot transforms an unstructured arrangement of objects into an organized arrangement, which can facilitate further manipulation. We propose SimPLE (Simulation to Pick Localize and placE) as a solution to precise pick and place. SimPLE learns to pick, regrasp, and place objects given the object's computer-aided design model and no prior experience. We developed three main components: task-aware grasping, visuotactile perception, and regrasp planning. Task-aware grasping computes affordances of grasps that are stable, observable, and favorable to placing. The visuotactile perception model relies on matching real observations against a set of simulated ones through supervised learning to estimate a distribution of likely object poses. Last, we computed a multistep pick-and-place plan by solving a shortest-path problem on a graph of hand-to-hand regrasps. On a dual-arm robot equipped with visuotactile sensing, SimPLE demonstrated pick and place of 15 diverse objects. The objects spanned a wide range of shapes, and SimPLE achieved successful placements into structured arrangements with 1-mm clearance more than 90% of the time for six objects and more than 80% of the time for 11 objects.

3.
Nat Commun ; 15(1): 3775, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710701

RESUMEN

SAMHD1 regulates cellular nucleotide homeostasis, controlling dNTP levels by catalysing their hydrolysis into 2'-deoxynucleosides and triphosphate. In differentiated CD4+ macrophage and resting T-cells SAMHD1 activity results in the inhibition of HIV-1 infection through a dNTP blockade. In cancer, SAMHD1 desensitizes cells to nucleoside-analogue chemotherapies. Here we employ time-resolved cryogenic-EM imaging and single-particle analysis to visualise assembly, allostery and catalysis by this multi-subunit enzyme. Our observations reveal how dynamic conformational changes in the SAMHD1 quaternary structure drive the catalytic cycle. We capture five states at high-resolution in a live catalytic reaction, revealing how allosteric activators support assembly of a stable SAMHD1 tetrameric core and how catalysis is driven by the opening and closing of active sites through pairwise coupling of active sites and order-disorder transitions in regulatory domains. This direct visualisation of enzyme catalysis dynamics within an allostery-stabilised platform sets a precedent for mechanistic studies into the regulation of multi-subunit enzymes.


Asunto(s)
Dominio Catalítico , Microscopía por Crioelectrón , Proteína 1 que Contiene Dominios SAM y HD , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/química , Proteína 1 que Contiene Dominios SAM y HD/genética , Regulación Alostérica , Humanos , Estructura Cuaternaria de Proteína , Catálisis , Biocatálisis , VIH-1/metabolismo , Modelos Moleculares
4.
Blood ; 143(19): 1953-1964, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38774451

RESUMEN

The sterile alpha motif and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several haematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Co-immunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Asunto(s)
Linfoma de Células del Manto , Proteína 1 que Contiene Dominios SAM y HD , Factores de Transcripción SOXC , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Humanos , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/genética , Animales , Ratones , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Unión Proteica , Línea Celular Tumoral , Citarabina/farmacología
5.
Clin Cancer Res ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819400

RESUMEN

PURPOSE: Estrogen Receptor (ER) alpha signaling is a known driver of ER-positive (ER+)/human epidermal growth factor receptor 2 negative (HER2-) breast cancer. Combining endocrine therapy (ET) such as fulvestrant with CDK4/6, mTOR or PI3K inhibitors is now a central strategy for the treatment of ER+ advanced breast cancer. However, suboptimal ER inhibition and resistance resulting from ESR1 mutation dictates that new therapies are needed. EXPERIMENTAL DESIGN: A medicinal chemistry campaign identified vepdegestrant (ARV-471), a selective, orally bioavailable, potent small molecule PROteolysis-TArgeting Chimera (PROTAC®) degrader of ER. We used biochemical and intracellular target engagement assays to demonstrate the mechanism of action of vepdegestrant, and ESR1 wild-type and mutant ER+ preclinical breast cancer models to demonstrate ER degradation-mediated tumor growth inhibition. RESULTS: Vepdegestrant induced ≥90% degradation of wild-type (WT) and mutant ER, inhibited ER-dependent breast cancer cell line proliferation in-vitro and achieved significant tumor growth inhibition (TGI) (87-123%) in MCF7 orthotopic xenograft models, better than the ET agent fulvestrant (31-80% TGI). In the hormone-independent ER Y537S patient derived xenograft (PDX) breast cancer model ST941/HI, vepdegestrant achieved tumor regressions and was similarly efficacious in the ST941/HI/PBR palbociclib-resistant model (102% TGI). Vepdegestrant induced robust tumor regressions in combination with each of the CDK4/6 inhibitors palbociclib, abemaciclib, and ribociclib, the mTOR inhibitor everolimus, and the PI3K inhibitors alpelisib and inavolisib. CONCLUSIONS: Vepdegestrant achieved greater ER degradation in-vivo compared to fulvestrant, which correlated with improved tumor growth inhibition, suggesting vepdegestrant could be a more effective backbone ET for patients with ER+/HER2- breast cancer.

6.
Nature ; 629(8012): 697-703, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658755

RESUMEN

RAD52 is important for the repair of DNA double-stranded breaks1,2, mitotic DNA synthesis3-5 and alternative telomere length maintenance6,7. Central to these functions, RAD52 promotes the annealing of complementary single-stranded DNA (ssDNA)8,9 and provides an alternative to BRCA2/RAD51-dependent homologous recombination repair10. Inactivation of RAD52 in homologous-recombination-deficient BRCA1- or BRCA2-defective cells is synthetically lethal11,12, and aberrant expression of RAD52 is associated with poor cancer prognosis13,14. As a consequence, RAD52 is an attractive therapeutic target against homologous-recombination-deficient breast, ovarian and prostate cancers15-17. Here we describe the structure of RAD52 and define the mechanism of annealing. As reported previously18-20, RAD52 forms undecameric (11-subunit) ring structures, but these rings do not represent the active form of the enzyme. Instead, cryo-electron microscopy and biochemical analyses revealed that ssDNA annealing is driven by RAD52 open rings in association with replication protein-A (RPA). Atomic models of the RAD52-ssDNA complex show that ssDNA sits in a positively charged channel around the ring. Annealing is driven by the RAD52 N-terminal domains, whereas the C-terminal regions modulate the open-ring conformation and RPA interaction. RPA associates with RAD52 at the site of ring opening with critical interactions occurring between the RPA-interacting domain of RAD52 and the winged helix domain of RPA2. Our studies provide structural snapshots throughout the annealing process and define the molecular mechanism of ssDNA annealing by the RAD52-RPA complex.


Asunto(s)
Microscopía por Crioelectrón , ADN de Cadena Simple , Complejos Multiproteicos , Proteína Recombinante y Reparadora de ADN Rad52 , Proteína de Replicación A , Humanos , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , Modelos Moleculares , Unión Proteica , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/ultraestructura , Proteína de Replicación A/química , Proteína de Replicación A/metabolismo , Proteína de Replicación A/ultraestructura , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Dominios Proteicos , Sitios de Unión
7.
Blood ; 143(19): 1953-1964, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38237141

RESUMEN

ABSTRACT: Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Coimmunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner, which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Asunto(s)
Linfoma de Células del Manto , Proteína 1 que Contiene Dominios SAM y HD , Factores de Transcripción SOXC , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Humanos , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/genética , Animales , Ratones , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Unión Proteica , Línea Celular Tumoral , Citarabina/farmacología
8.
JCI Insight ; 9(3)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38113104

RESUMEN

Hidradenitis suppurativa (HS) is a chronic skin condition affecting approximately 1% of the US population. HS skin lesions are highly inflammatory and characterized by a large immune infiltrate. While B cells and plasma cells comprise a major component of this immune milieu, the biology and the contribution of these cells in HS pathogenesis are unclear. We aimed to investigate the dynamics and microenvironmental interactions of B cells within cutaneous HS lesions. Combining histological analysis, single-cell RNA sequencing, and spatial transcriptomics profiling of HS lesions, we defined the tissue microenvironment relative to B cell activity within this disease. Our findings identified tertiary lymphoid structures (TLSs) within HS lesions and described organized interactions among T cells, B cells, antigen-presenting cells, and skin stroma. We found evidence that B cells within HS TLSs actively underwent maturation, including participation in germinal center reactions and class switch recombination. Moreover, skin stroma and accumulating T cells were primed to support the formation of TLSs and facilitate B cell recruitment during HS. Our data definitively demonstrated the presence of TLSs in lesional HS skin and point to ongoing cutaneous B cell maturation through class switch recombination and affinity maturation during disease progression in this inflamed nonlymphoid tissue.


Asunto(s)
Hidradenitis Supurativa , Estructuras Linfoides Terciarias , Humanos , Hidradenitis Supurativa/patología , Estructuras Linfoides Terciarias/patología , Piel/patología , Linfocitos B/patología , Linfocitos T/patología
9.
J Mol Cell Biol ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037430

RESUMEN

Lenacapavir, targeting the HIV-1 capsid, is the first-in-class antiretroviral drug recently approved for clinical use. The development of Lenacapavir is attributed to the remarkable progress in our understanding of the capsid protein made during the last few years. Considered little more than a component of the virus shell to be shed early during infection, capsid has been found to be a key player in the HIV-1 life cycle by interacting with multiple host cell factors, entering the nucleus, and directing integration. Here, we describe the key advances that led to this "capsid revolution".

10.
Nat Commun ; 14(1): 6809, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884503

RESUMEN

Poly(ADP-ribose) polymerase (PARP) inhibitors are used in the clinic to treat BRCA-deficient breast, ovarian and prostate cancers. As their efficacy is potentiated by loss of the nucleotide salvage factor DNPH1 there is considerable interest in the development of highly specific small molecule DNPH1 inhibitors. Here, we present X-ray crystal structures of dimeric DNPH1 bound to its substrate hydroxymethyl deoxyuridine monophosphate (hmdUMP). Direct interaction with the hydroxymethyl group is important for substrate positioning, while conserved residues surrounding the base facilitate target discrimination. Glycosidic bond cleavage is driven by a conserved catalytic triad and proceeds via a two-step mechanism involving formation and subsequent disruption of a covalent glycosyl-enzyme intermediate. Mutation of a previously uncharacterised yet conserved glutamate traps the intermediate in the active site, demonstrating its role in the hydrolytic step. These observations define the enzyme's catalytic site and mechanism of hydrolysis, and provide important insights for inhibitor discovery.


Asunto(s)
Nucleótidos , Humanos , Modelos Moleculares , Hidrólisis , Dominio Catalítico , Catálisis
11.
Cell Rep Methods ; 3(6): 100508, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37426752

RESUMEN

Understanding how the RNA-binding domains of a protein regulator are used to recognize its RNA targets is a key problem in RNA biology, but RNA-binding domains with very low affinity do not perform well in the methods currently available to characterize protein-RNA interactions. Here, we propose to use conservative mutations that enhance the affinity of RNA-binding domains to overcome this limitation. As a proof of principle, we have designed and validated an affinity-enhanced K-homology (KH) domain mutant of the fragile X syndrome protein FMRP, a key regulator of neuronal development, and used this mutant to determine the domain's sequence preference and to explain FMRP recognition of specific RNA motifs in the cell. Our results validate our concept and our nuclear magnetic resonance (NMR)-based workflow. While effective mutant design requires an understanding of the underlying principles of RNA recognition by the relevant domain type, we expect the method will be used effectively in many RNA-binding domains.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , ARN , ARN/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteínas/genética , Mutación , Motivos de Unión al ARN/genética
12.
Nucleic Acids Res ; 51(16): 8774-8786, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37377445

RESUMEN

m6A methylation provides an essential layer of regulation in organismal development, and is aberrant in a range of cancers and neuro-pathologies. The information encoded by m6A methylation is integrated into existing RNA regulatory networks by RNA binding proteins that recognise methylated sites, the m6A readers. m6A readers include a well-characterised class of dedicated proteins, the YTH proteins, as well as a broader group of multi-functional regulators where recognition of m6A is only partially understood. Molecular insight in this recognition is essential to build a mechanistic understanding of global m6A regulation. In this study, we show that the reader IMP1 recognises the m6A using a dedicated hydrophobic platform that assembles on the methyl moiety, creating a stable high-affinity interaction. This recognition is conserved across evolution and independent from the underlying sequence context but is layered upon the strong sequence specificity of IMP1 for GGAC RNA. This leads us to propose a concept for m6A regulation where methylation plays a context-dependent role in the recognition of selected IMP1 targets that is dependent on the cellular concentration of available IMP1, differing from that observed for the YTH proteins.


Asunto(s)
Proteínas Aviares , Proteínas de Unión al ARN , Adenosina/metabolismo , Proteínas Aviares/metabolismo , Metilación , Procesamiento Proteico-Postraduccional , Proteínas/genética , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Pollos
13.
Retrovirology ; 20(1): 5, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127613

RESUMEN

BACKGROUND: SAMHD1 is a deoxynucleotide triphosphohydrolase that restricts replication of HIV-1 in differentiated leucocytes. HIV-1 is not restricted in cycling cells and it has been proposed that this is due to phosphorylation of SAMHD1 at T592 in these cells inactivating the enzymatic activity. To distinguish between theories for how SAMHD1 restricts HIV-1 in differentiated but not cycling cells, we analysed the effects of substitutions at T592 on restriction and dNTP levels in both cycling and differentiated cells as well as tetramer stability and enzymatic activity in vitro. RESULTS: We first showed that HIV-1 restriction was not due to SAMHD1 nuclease activity. We then characterised a panel of SAMHD1 T592 mutants and divided them into three classes. We found that a subset of mutants lost their ability to restrict HIV-1 in differentiated cells which generally corresponded with a decrease in triphosphohydrolase activity and/or tetramer stability in vitro. Interestingly, no T592 mutants were able to restrict WT HIV-1 in cycling cells, despite not being regulated by phosphorylation and retaining their ability to hydrolyse dNTPs. Lowering dNTP levels by addition of hydroxyurea did not give rise to restriction. Compellingly however, HIV-1 RT mutants with reduced affinity for dNTPs were significantly restricted by wild-type and T592 mutant SAMHD1 in both cycling U937 cells and Jurkat T-cells. Restriction correlated with reverse transcription levels. CONCLUSIONS: Altogether, we found that the amino acid at residue 592 has a strong effect on tetramer formation and, although this is not a simple "on/off" switch, this does correlate with the ability of SAMHD1 to restrict HIV-1 replication in differentiated cells. However, preventing phosphorylation of SAMHD1 and/or lowering dNTP levels by adding hydroxyurea was not enough to restore restriction in cycling cells. Nonetheless, lowering the affinity of HIV-1 RT for dNTPs, showed that restriction is mediated by dNTP levels and we were able to observe for the first time that SAMHD1 is active and capable of inhibiting HIV-1 replication in cycling cells, if the affinity of RT for dNTPs is reduced. This suggests that the very high affinity of HIV-1 RT for dNTPs prevents HIV-1 restriction by SAMHD1 in cycling cells.


Asunto(s)
VIH-1 , Proteínas de Unión al GTP Monoméricas , Humanos , VIH-1/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Fosforilación , Células U937 , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo
14.
Front Cell Dev Biol ; 11: 1119514, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065848

RESUMEN

CTCF is an architectonic protein that organizes the genome inside the nucleus in almost all eukaryotic cells. There is evidence that CTCF plays a critical role during spermatogenesis as its depletion produces abnormal sperm and infertility. However, defects produced by its depletion throughout spermatogenesis have not been fully characterized. In this work, we performed single cell RNA sequencing in spermatogenic cells with and without CTCF. We uncovered defects in transcriptional programs that explain the severity of the damage in the produced sperm. In the early stages of spermatogenesis, transcriptional alterations are mild. As germ cells go through the specialization stage or spermiogenesis, transcriptional profiles become more altered. We found morphology defects in spermatids that support the alterations in their transcriptional profiles. Altogether, our study sheds light on the contribution of CTCF to the phenotype of male gametes and provides a fundamental description of its role at different stages of spermiogenesis.

15.
mBio ; 14(1): e0356022, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36744954

RESUMEN

Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are an emerging class of small molecules that disrupt viral maturation by inducing the aberrant multimerization of IN. Here, we present cocrystal structures of HIV-1 IN with two potent ALLINIs, namely, BI-D and the drug candidate Pirmitegravir. The structures reveal atomistic details of the ALLINI-induced interface between the HIV-1 IN catalytic core and carboxyl-terminal domains (CCD and CTD). Projecting from their principal binding pocket on the IN CCD dimer, the compounds act as molecular glue by engaging a triad of invariant HIV-1 IN CTD residues, namely, Tyr226, Trp235, and Lys266, to nucleate the CTD-CCD interaction. The drug-induced interface involves the CTD SH3-like fold and extends to the beginning of the IN carboxyl-terminal tail region. We show that mutations of HIV-1 IN CTD residues that participate in the interface with the CCD greatly reduce the IN-aggregation properties of Pirmitegravir. Our results explain the mechanism of the ALLINI-induced condensation of HIV-1 IN and provide a reliable template for the rational development of this series of antiretrovirals through the optimization of their key contacts with the viral target. IMPORTANCE Despite the remarkable success of combination antiretroviral therapy, HIV-1 remains among the major causes of human suffering and loss of life in poor and developing nations. To prevail in this drawn-out battle with the pandemic, it is essential to continue developing advanced antiviral agents to fight drug resistant HIV-1 variants. Allosteric integrase inhibitors (ALLINIs) are an emerging class of HIV-1 antagonists that are orthogonal to the current antiretroviral drugs. These small molecules act as highly specific molecular glue, which triggers the aggregation of HIV-1 integrase. In this work, we present high-resolution crystal structures that reveal the crucial interactions made by two potent ALLINIs, namely, BI-D and Pirmitegravir, with HIV-1 integrase. Our results explain the mechanism of drug action and will inform the development of this promising class of small molecules for future use in antiretroviral regimens.


Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Humanos , Regulación Alostérica , Inhibidores de Integrasa VIH/farmacología , Antivirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico
16.
bioRxiv ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36824918

RESUMEN

Background: Hidradenitis suppurativa (HS) skin lesions are highly inflammatory and characterized by a large immune infiltrate. While B cells and plasma cells comprise a major component of this immune milieu the biology and contribution of these cells in HS pathogenesis is unclear. Objective: We aimed to investigate the dynamics and microenvironmental interactions of B cells within cutaneous HS lesions. Methods: We combined histological analysis, single-cell RNA-sequencing (scRNAseq), and spatial transcriptomic profiling of HS lesions to define the tissue microenvironment relative to B cell activity within this disease. Results: Our findings identify tertiary lymphoid structures (TLS) within HS lesions and describe organized interactions between T cells, B cells, antigen presenting cells and skin stroma. We find evidence that B cells within HS TLS actively undergo maturation, including participation in germinal center reactions and class switch recombination. Moreover, skin stroma and accumulating T cells are primed to support the formation of TLS and facilitate B cell recruitment during HS. Conclusion: Our data definitively demonstrate the presence of TLS in lesional HS skin and point to ongoing cutaneous B cell maturation through class switch recombination and affinity maturation during disease progression in this inflamed non-lymphoid tissue.

17.
J Virol ; 97(1): e0087222, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36633408

RESUMEN

The zinc finger antiviral protein (ZAP) inhibits viral replication by directly binding CpG dinucleotides in cytoplasmic viral RNA to inhibit protein synthesis and target the RNA for degradation. ZAP evolved in tetrapods and there are clear orthologs in reptiles, birds, and mammals. When ZAP emerged, other proteins may have evolved to become cofactors for its antiviral activity. KHNYN is a putative endoribonuclease that is required for ZAP to restrict retroviruses. To determine its evolutionary path after ZAP emerged, we compared KHNYN orthologs in mammals and reptiles to those in fish, which do not encode ZAP. This identified residues in KHNYN that are highly conserved in species that encode ZAP, including several in the CUBAN domain. The CUBAN domain interacts with NEDD8 and Cullin-RING E3 ubiquitin ligases. Deletion of the CUBAN domain decreased KHNYN antiviral activity, increased protein expression and increased nuclear localization. However, mutation of residues required for the CUBAN domain-NEDD8 interaction increased KHNYN abundance but did not affect its antiviral activity or cytoplasmic localization, indicating that Cullin-mediated degradation may control its homeostasis and regulation of protein turnover is separable from its antiviral activity. By contrast, the C-terminal residues in the CUBAN domain form a CRM1-dependent nuclear export signal (NES) that is required for its antiviral activity. Deletion or mutation of the NES increased KHNYN nuclear localization and decreased its interaction with ZAP. The final 2 positions of this NES are not present in fish KHNYN orthologs and we hypothesize their evolution allowed KHNYN to act as a ZAP cofactor. IMPORTANCE The interferon system is part of the innate immune response that inhibits viruses and other pathogens. This system emerged approximately 500 million years ago in early vertebrates. Since then, some genes have evolved to become antiviral interferon-stimulated genes (ISGs) while others evolved so their encoded protein could interact with proteins encoded by ISGs and contribute to their activity. However, this remains poorly characterized. ZAP is an ISG that arose during tetrapod evolution and inhibits viral replication. Because KHNYN interacts with ZAP and is required for its antiviral activity against retroviruses, we conducted an evolutionary analysis to determine how specific amino acids in KHNYN evolved after ZAP emerged. This identified a nuclear export signal that evolved in tetrapods and is required for KHNYN to traffic in the cell and interact with ZAP. Overall, specific residues in KHNYN evolved to allow it to act as a cofactor for ZAP antiviral activity.


Asunto(s)
Evolución Molecular , Señales de Exportación Nuclear , Proteínas de Unión al ARN , Ubiquitina-Proteína Ligasas , Animales , Proteínas Cullin/metabolismo , Interferones/genética , ARN Viral/genética , Replicación Viral/fisiología , Proteínas de Unión al ARN/genética , Ubiquitina-Proteína Ligasas/genética
18.
J Sport Exerc Psychol ; 45(1): 41-48, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634308

RESUMEN

Minimizing the temporal gap between behavior and reward enhances persistence, but the effect of other outcomes is unknown. Two concurrently run studies aimed to investigate whether persistence on a physical task would be influenced according to whether participants expected immediate versus delayed goal feedback. Furthermore, whether this effect occurs via intrinsic motivation (Studies 1 and 2) or delaying the desire-goal conflict (Study 2) was examined. Using a counterbalanced within-person design, 34 participants in each study (Study 1: 16 males, 18 females; Study 2: 15 males, 19 females) completed two wall-sit persistence tasks, one with immediate feedback expected (regarding the participant's position on a leader board) and the other with feedback expected to be provided 1 week later. A two-way mixed analysis of variance found no significant differences in persistence between conditions in either study. Furthermore, no indirect effects were found via intrinsic motivation or delayed desire-goal conflict. Study findings did not support the hypothesis that the timing of expected feedback enhances persistence.


Asunto(s)
Objetivos , Motivación , Masculino , Femenino , Humanos , Retroalimentación , Atención , Recompensa
19.
Toxicol Pathol ; 50(6): 776-786, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35801382

RESUMEN

A retrospective study was performed to establish the causes of mortality and incidence patterns of tumors in young (<50 weeks) control CD-1® mice from Charles River Laboratories. Tumor incidences (fatal and nonfatal) and nonneoplastic causes of death observed during the first 50 weeks of the study were collected from 48 thirteen-week toxicity studies conducted between 2009 and 2018 and from 43 carcinogenicity studies conducted between 2005 and 2018. Thirteen-week studies had a mortality rate of 8/620 (1.3%) in males and 4/620 (0.65%) in females. The major factors contributing to death were integument lesions in males (3/8) and experimental procedure-related injuries in females (3/4). All tumors recorded were nonfatal. Bronchiolo-alveolar adenoma was the commonest tumor with the same incidence in both males and females (4/620, 0.65%); a single lymphoma (0.16%) and uterine leiomyosarcoma (1/620 0.16%) were reported in females. The mortality rates of males and females that died or were euthanized during the first 50 weeks in carcinogenicity studies were 192/2830 (6.8%) and 198/2830 (7%), respectively. The most common fatal tumor in this age group was lymphoma in both sexes, with an incidence of 18/192 (9.3%) and 41/198 (20.7%) in males and females, respectively. In males tumors were responsible for fewer deaths than in females (17% vs. 32.3%). The major nonneoplastic causes of death or moribundity were cutaneous lesions (44/192, 22.9%), and obstructive uropathy (39/192, 20.3%) in males, and chronic progressive nephropathy (40/198, 20.2%) in females. Only minor differences were evident compared to a similar study performed 15 years ago; these might reflect changes in terminology and diagnostic criteria, and stricter animal welfare endpoints.


Asunto(s)
Adenoma , Animales , Pruebas de Carcinogenicidad , Femenino , Masculino , Ratones , Ratas , Ratas Endogámicas F344 , Estudios Retrospectivos
20.
J Mol Biol ; 434(16): 167691, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35738429

RESUMEN

Solution and solid-state NMR spectroscopy are highly complementary techniques for studying structure and dynamics in very high molecular weight systems. Here we have analysed the dynamics of HIV-1 capsid (CA) assemblies in presence of the cofactors IP6 and ATPγS and the host-factor CPSF6 using a combination of solution state and cross polarisation magic angle spinning (CP-MAS) solid-state NMR. In particular, dynamical effects on ns to µs and µs to ms timescales are observed revealing diverse motions in assembled CA. Using CP-MAS NMR, we exploited the sensitivity of the amide/Cα-Cß backbone chemical shifts in DARR and NCA spectra to observe the plasticity of the HIV-1 CA tubular assemblies and also map the binding of cofactors and the dynamics of cofactor-CA complexes. In solution, we measured how the addition of host- and co-factors to CA -hexamers perturbed the chemical shifts and relaxation properties of CA-Ile and -Met methyl groups using transverse-relaxation-optimized NMR spectroscopy to exploit the sensitivity of methyl groups as probes in high-molecular weight proteins. These data show how dynamics of the CA protein assembly over a range of spatial and temporal scales play a critical role in CA function. Moreover, we show that binding of IP6, ATPγS and CPSF6 results in local chemical shift as well as dynamic changes for a significant, contiguous portion of CA, highlighting how allosteric pathways communicate ligand interactions between adjacent CA protomers.


Asunto(s)
Proteínas de la Cápside , Cápside , VIH-1 , Ensamble de Virus , Regulación Alostérica , Cápside/química , Cápside/fisiología , Proteínas de la Cápside/química , VIH-1/química , VIH-1/fisiología , Humanos , Resonancia Magnética Nuclear Biomolecular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...