Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mechanobiol Med ; 2(3)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38899029

RESUMEN

A definitive understanding of the interplay between protein binding/migration and membrane curvature evolution is emerging but needs further study. The mechanisms defining such phenomena are critical to intracellular transport and trafficking of proteins. Among trafficking modalities, exosomes have drawn attention in cancer research as these nano-sized naturally occurring vehicles are implicated in intercellular communication in the tumor microenvironment, suppressing anti-tumor immunity and preparing the metastatic niche for progression. A significant question in the field is how the release and composition of tumor exosomes are regulated. In this perspective article, we explore how physical factors such as geometry and tissue mechanics regulate cell cortical tension to influence exosome production by co-opting the biophysics as well as the signaling dynamics of intracellular trafficking pathways and how these exosomes contribute to the suppression of anti-tumor immunity and promote metastasis. We describe a multiscale modeling approach whose impact goes beyond the fundamental investigation of specific cellular processes toward actual clinical translation. Exosomal mechanisms are critical to developing and approving liquid biopsy technologies, poised to transform future non-invasive, longitudinal profiling of evolving tumors and resistance to cancer therapies to bring us one step closer to the promise of personalized medicine.

2.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38913610

RESUMEN

Bactrocera tryoni (Froggatt) and Bactrocera neohumeralis (Hardy) are sibling fruit fly species that are sympatric over much of their ranges. Premating isolation of these close relatives is thought to be maintained in part by allochrony-mating activity in B. tryoni peaks at dusk, whereas in B. neohumeralis, it peaks earlier in the day. To ascertain whether differences in pheromone composition may also contribute to premating isolation between them, this study used solid-phase microextraction and gas chromatography-mass spectrometry to characterize the rectal gland volatiles of a recently collected and a more domesticated strain of each species. These glands are typical production sites and reservoirs of pheromones in bactrocerans. A total of 120 peaks were detected and 50 were identified. Differences were found in the composition of the rectal gland emissions between the sexes, species, and recently collected versus domesticated strains of each species. The compositional variation included several presence/absence and many quantitative differences. Species and strain differences in males included several relatively small alcohols, esters, and aliphatic amides. Species and strain differences in females also included some of the amides but additionally involved many fatty acid esters and 3 spiroacetals. While the strain differences indicate there is also heritable variation in rectal gland emissions within each species, the species differences imply that compositional differences in pheromones emitted from rectal glands could contribute to the premating isolation between B. tryoni and B. neohumeralis. The changes during domestication could also have significant implications for the efficacy of Sterile Insect Technique control programs.


Asunto(s)
Feromonas , Tephritidae , Animales , Masculino , Femenino , Tephritidae/genética , Tephritidae/fisiología , Tephritidae/metabolismo , Simpatría , Cromatografía de Gases y Espectrometría de Masas , Especificidad de la Especie , Aislamiento Reproductivo , Conducta Sexual Animal , Microextracción en Fase Sólida
3.
Insects ; 14(11)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37999072

RESUMEN

Modern lipidomics has the power and sensitivity to elucidate the role of insects' lipidomes in their adaptations to the environment at a mechanistic molecular level. However, few lipidomic studies have yet been conducted on insects beyond model species such as Drosophila melanogaster. Here, we present the lipidome of adult males of another higher dipteran frugivore, Bactrocera tryoni. We describe 421 lipids across 15 classes of ester neutral lipids and phospholipids and ether neutral lipids and phospholipids. Most of the lipids are specified in terms of the carbon and double bond contents of each constituent hydrocarbon chain, and more ether lipids are specified to this degree than in any previous insect lipidomic analyses. Class-specific profiles of chain length and (un)saturation are broadly similar to those reported in D. melanogaster, although we found fewer medium-length chains in ether lipids. The high level of chain specification in our dataset also revealed widespread non-random combinations of different chain types in several ester lipid classes, including deficits of combinations involving chains of the same carbon and double bond contents among four phospholipid classes and excesses of combinations of dissimilar chains in several classes. Large differences were also found in the length and double bond profiles of the acyl vs. alkyl or alkenyl chains of the ether lipids. Work on other organisms suggests some of the differences observed will be functionally consequential and mediated, at least in part, by differences in substrate specificity among enzymes in lipid synthesis and remodelling pathways. Interrogation of the B. tryoni genome showed it has comparable levels of diversity overall in these enzymes but with some gene gain/loss differences and considerable sequence divergence from D. melanogaster.

4.
Eur Phys J E Soft Matter ; 46(10): 97, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831216

RESUMEN

Strongly charged polyelectrolytes (PEs) demonstrate complex solution behavior as a function of chain length, concentrations, and ionic strength. The viscosity behavior is important to understand and is a core quantity for many applications, but aspects remain a challenge. Molecular dynamics simulations using implicit solvent coarse-grained (CG) models successfully reproduce structure, but are often inappropriate for calculating viscosities. To address the need for CG models which reproduce viscoelastic properties of one of the most studied PEs, sodium polystyrene sulfonate (NaPSS), we report our recent efforts in using Bayesian optimization to develop CG models of NaPSS which capture both polymer structure and dynamics in aqueous solutions with explicit solvent. We demonstrate that our explicit solvent CG NaPSS model with the ML-BOP water model [Chan et al. Nat Commun 10, 379 (2019)] quantitatively reproduces NaPSS chain statistics and solution structure. The new explicit solvent CG model is benchmarked against diffusivities from atomistic simulations and experimental specific viscosities for short chains. We also show that our Bayesian-optimized CG model is transferable to larger chain lengths across a range of concentrations. Overall, this work provides a machine-learned model to probe the structural, dynamic, and rheological properties of polyelectrolytes such as NaPSS and aids in the design of novel, strongly charged polymers with tunable structural and viscoelastic properties.

5.
Arch Microbiol ; 205(10): 328, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37676308

RESUMEN

The development of effective pest management strategies for Spodoptera frugiperda is a high priority for crop protection across its invasive ranges. Here, we examined six Beauveria and five Metarhizium fungal isolates against this pest. Two Beauveria isolates (B-0571, B-1311) induced high mortality toward 3rd and 6th instar caterpillars and adults. For B-0571 mortality was 82.81 ± 5.75%, 61.46 ± 6.83%, and 93.75 ± 3.61%, and 73.72 ± 2.51%, 71.88 ± 5.41%, and 97.92 ± 2.08% for B-1311, with deaths in caterpillars largely occurring under 24 h (3rd instar control 0.74 ± 0.33%, B-0571 73.96 ± 7.85% and B-1311 62.08 ± 3.67%; 6th instar control 0%, B-0571 66.67% ± 11.02% and B-1311 62.5% ± 9.55%). Infection from both Beauveria isolates fully prevented reproduction in surviving S. frugiperda females. In contrast, all five Metarhizium isolates tested and the remaining four Beauveria isolates exhibited lower virulence. The discovery of two highly virulent Beauveria fungal isolates to S. frugiperda opens avenues to develop novel biological control tools against this highly invasive pest.


Asunto(s)
Beauveria , Metarhizium , Femenino , Animales , Spodoptera , Virulencia
6.
Cells Tissues Organs ; 212(5): 468-483, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37751723

RESUMEN

The extracellular matrix (ECM) is a complex, hierarchical material containing structural and bioactive components. This complexity makes decoupling the effects of biomechanical properties and cell-matrix interactions difficult, especially when studying cellular processes in a 3D environment. Matrix mechanics and cell adhesion are both known regulators of specific cellular processes such as stem cell proliferation and differentiation. However, more information is required about how such variables impact various neural lineages that could, upon transplantation, therapeutically improve neural function after a central nervous system injury or disease. Rapidly Assembling Pentapeptides for Injectable Delivery (RAPID) hydrogels are one biomaterial approach to meet these goals, consisting of a family of peptide sequences that assemble into physical hydrogels in physiological media. In this study, we studied our previously reported supramolecularly-assembling RAPID hydrogels functionalized with the ECM-derived cell-adhesive peptide ligands RGD, IKVAV, and YIGSR. Using molecular dynamics simulations and experimental rheology, we demonstrated that these integrin-binding ligands at physiological concentrations (3-12 mm) did not impact the assembly of the KYFIL peptide system. In simulations, molecular measures of assembly such as hydrogen bonding and pi-pi interactions appeared unaffected by cell-adhesion sequence or concentration. Visualizations of clustering and analysis of solvent-accessible surface area indicated that the integrin-binding domains remained exposed. KYFIL or AYFIL hydrogels containing 3 mm of integrin-binding domains resulted in mechanical properties consistent with their non-functionalized equivalents. This strategy of doping RAPID gels with cell-adhesion sequences allows for the precise tuning of peptide ligand concentration, independent of the rheological properties. The controllability of the RAPID hydrogel system provides an opportunity to investigate the effect of integrin-binding interactions on encapsulated neural cells to discern how hydrogel microenvironment impacts growth, maturation, or differentiation.


Asunto(s)
Hidrogeles , Péptidos , Ligandos , Péptidos/química , Adhesión Celular , Hidrogeles/química , Integrinas/metabolismo
7.
Soft Matter ; 19(26): 4939-4953, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37340986

RESUMEN

We perform coarse-grained (CG) molecular dynamics (MD) simulations to investigate the self-assembly of collagen-like peptide (CLP) triple helices into fibrillar structures and percolated networks as a function of solvent quality. The focus of this study is on CLP triple helices whose strands are different lengths (i.e., heterotrimers), leading to dangling 'sticky ends'. These 'sticky ends' are segments of the CLP strands that have unbonded hydrogen-bonding donor/acceptor sites that drive heterotrimeric CLP triple helices to physically associate with one another, leading to assembly into higher-order structures. We use a validated CG model for CLP in implicit solvent and capture varying solvent quality through changing strength of attraction between CG beads representing the amino acids in the CLP strands. Our CG MD simulations show that, at lower CLP concentrations, CLP heterotrimers assemble into fibrils and, at higher CLP concentrations, into percolated networks. At higher concentrations, decreasing solvent quality causes (i) the formation of heterogeneous network structures with a lower degree of branching at network junctions and (ii) increases in the diameter of network strands and pore sizes. We also observe a nonmonotonic effect of solvent quality on distances between network junctions due to the balance between heterotrimer end-end associations driven by hydrogen bonding and side-side associations driven by worsening solvent quality. Below the percolation threshold, we observe that decreasing solvent quality leads to the formation of fibrils composed of multiple aligned CLP triple helices, while the number of 'sticky ends' governs the spatial extent (radius of gyration) of the assembled fibrils.


Asunto(s)
Colágeno , Péptidos , Solventes , Péptidos/química , Colágeno/química , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína
8.
PLoS One ; 18(4): e0285099, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37115788

RESUMEN

Divergence between populations in mating behaviour can function as a potent premating isolating mechanism and promote speciation. However, very few cases of inherited intraspecific variation in sexual signalling have been reported in tephritid fruit flies, despite them being a highly speciose family. We tested for such variation in one tephritid, the Queensland fruit fly, Bactrocera tryoni (Qfly). Qfly mating behaviour depends on volatiles secreted from male rectal glands but no role for the volatiles from female rectal glands has yet been reported. We previously detected over 100 volatile compounds in male rectal glands and identified over 30 of them. Similar numbers were recorded in females. However, many compounds showed presence/absence differences between the sexes and many others showed quantitative differences between them. Here we report inherited variation among 24 Qfly lines (23 isofemale lines established from recent field collections and one domesticated line) in the abundance of three esters, two alcohols, two amides, an aldehyde and 18 unidentified volatiles in male rectal glands. We did not find any compounds in female rectal glands that varied significantly among the lines, although this may at least partly reflect lower female sample numbers. Most of the 26 male compounds that differed between lines were more abundant in the domesticated line than any of the recently established isofemale lines, which concurs with other evidence for changes in mating behaviour during domestication of this species. There were also large differences in several of the 26 compounds among the isofemale lines, and some of these differences were associated with the regions from which the lines were collected. While some of the variation in different compounds was correlated across lines, much of it was not, implicating involvement of multiple genes. Our findings parallel reports of geographic variation in other Qfly traits and point to inherited differences in reproductive physiology that could provide a basis for evolution of premating isolation between ecotypes.


Asunto(s)
Tephritidae , Animales , Masculino , Femenino , Tephritidae/genética , Glándula de Sal , Drosophila , Domesticación , Variación Genética
9.
Sci Rep ; 12(1): 15768, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130986

RESUMEN

Humans have used weaver ants, Oecophylla smaragdina, as biological control agents to control insect pests in orchards for many centuries. Over recent decades, the effectiveness of weaver ants as biological control agents has been attributed in part to deterrent and oviposition inhibiting effects of kairomones produced by the ants, but the chemical identity of these kairomones has remained unknown. We have identified the kairomone responsible for deterrence and oviposition inhibition by O. smaragdina, providing a significant advance in understanding the chemical basis of their predator/prey interactions. Olfactometer assays with extracts from weaver ants demonstrated headspace volatiles to be highly repellent to Queensland fruit fly, Bactrocera tryoni. Using electrophysiology and bioassays, we demonstrate that this repellence is induced by a single compound, 1-octanol. Of 16 compounds identified in O. smaragdina headspace, only 1-octanol evoked an electrophysiological response from B. tryoni antennae. Flies had greatly reduced oviposition and spent significantly less time in an olfactometer arm in the presence of 1-octanol or a synthetic blend of headspace volatiles containing 1-octanol than in the presence of a synthetic blend of headspace volatiles without 1-octanol, or clean air. Taken together, our results demonstrate that 1-octanol is the functional kairomone component of O. smaragdina headspace that explains repellence and oviposition deterrence, and is hence an important contributor to the effectiveness of these ants as biological control agents.


Asunto(s)
Hormigas , Tephritidae , 1-Octanol , Animales , Hormigas/fisiología , Agentes de Control Biológico , Femenino , Humanos , Oviposición/fisiología , Feromonas/farmacología , Extractos Vegetales/farmacología , Tephritidae/fisiología
10.
PLoS One ; 17(8): e0273210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36001616

RESUMEN

Rectal gland volatiles are key mediators of sexual interactions in tephritid fruit flies. We used solid-phase microextraction (SPME) plus gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID) to substantially expand rectal gland chemical characterisation of the Queensland fruit fly (Bactrocera tryoni (Diptera: Tephritidae); Qfly). The SPME GC-MS analysis identified 24 of the 30 compounds previously recorded from Qfly rectal glands, plus another 21 compounds that had not previously been reported. A few amides and fatty acid esters dominated the chromatograms of males and females respectively, but we also found other esters, alcohols and aldehydes and a ketone. The GC-FID analyses also revealed over 150 others, as yet unidentified, volatiles, generally in lesser amounts. The GC-FID analyses also showed 49 and 12 compounds were male- and female-specific, respectively, both in single sex (virgin) and mixed sex (mostly mated) groups. Another ten compounds were male-specific among virgins but undetected in mixed sex groups, and 29 were undetected in virgins but male-specific in mixed sex groups. The corresponding figures for females were four and zero, respectively. Most short retention time peaks (including a ketone and an ester) were male-specific, whereas most female-biased peaks (including five fatty acid esters) had long retention times. Our results indicate previously unsuspected diversity of rectal gland volatiles that might have pheromone functions in males, but far fewer in females.


Asunto(s)
Tephritidae , Animales , Ácidos Grasos , Femenino , Cromatografía de Gases y Espectrometría de Masas , Cetonas , Masculino , Glándula de Sal , Caracteres Sexuales
11.
Curr Res Insect Sci ; 2: 100040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003266

RESUMEN

Female insects commonly have more than one mate during a breeding period ('polyandry'), storing and using sperm from multiple males. In addition to its evolutionary significance, insect polyandry has practical implications for pest management that relies on the sterile insect technique (SIT). The Queensland fruit fly, Bactrocera tryoni (Froggatt), is a major horticultural pest in Australia, and outbreaks are managed by SIT in some regions. The present study provides the first evidence for polyandry in female B. tryoni from field populations from New South Wales (NSW) and Queensland (QLD) through multi-locus genotyping (ten microsatellite markers in four fluorescent multiplexes) of the stored sperm in ovipositing females. Polyandry level was significantly higher in the NSW collection (80.0 %) than the QLD collection (26.1 %), suggesting substantial regional and/or temporal variation. These findings have important implications for the use of SIT to suppress B. tryoni populations and to eradicate outbreaks.

12.
Soft Matter ; 18(16): 3177-3192, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35380571

RESUMEN

Collagen-like peptides (CLP) are multifunctional materials garnering a lot of recent interest from the biomaterials community due to their hierarchical assembly and tunable physicochemical properties. In this work, we present a computational study that links the design of CLP heterotrimers to the thermal stability of the triple helix and their self-assembly into fibrillar aggregates and percolated networks. Unlike homotrimeric helices, the CLP heterotrimeric triple helices in this study are made of CLP strands of different chain lengths that result in 'sticky' ends with available hydrogen bonding groups. These 'sticky' ends at one end or both ends of the CLP heterotrimer then facilitate inter-helix hydrogen bonding leading to self-assembly into fibrils (clusters) and percolated networks. We consider the cases of three sticky end lengths - two, four, and six repeat units - present entirely on one end or split between two ends of the CLP heterotrimer. We observe in CLP heterotrimer melting curves generated using coarse grained Langevin dynamics simulations at low CLP concentration that increasing sticky end length results in lower melting temperatures for both one and two sticky ended CLP designs. At higher CLP concentrations, we observe non-monotonic trends in cluster sizes with increasing sticky end length with one sticky end but not for two sticky ends with the same number of available hydrogen bonding groups as the one sticky end; this nonmonotonicity stems from the formation of turn structures stabilized by hydrogen bonds at the single, sticky end for sticky end lengths greater than four repeat units. With increasing CLP concentration, heterotrimers also form percolated networks with increasing sticky end length with a minimum sticky end length of four repeat units required to observe percolation. Overall, this work informs the design of thermoresponsive, peptide-based biomaterials with desired morphologies using strand length and dispersity as a handle for tuning thermal stability and formation of supramolecular structures.


Asunto(s)
Colágeno , Simulación de Dinámica Molecular , Materiales Biocompatibles , Colágeno/química , Péptidos/química , Temperatura
13.
Microorganisms ; 10(2)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35208745

RESUMEN

The transition from nature to laboratory or mass rearing can impose significant physiological and evolutionary impact on insects. The Queensland fruit fly (also known as 'Qfly'), Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), is a serious economic pest that presents major challenges for horticulture industries in Australia. The sterile insect technique (SIT) is being developed to manage outbreaks in regions that remain free of Qfly and to suppress populations in regions where this species is endemic. The biology of Qfly is intimately connected to its microbiome. Therefore, changes in the microbiome that occur through domestication have implications for SIT. There are numerous studies of the microbiome in Qfly larvae and adults, but there is little information on how the microbiome changes as Qfly laboratory colonies are established. In this study, high-throughput Illumina sequencing was used to assess the Qfly microbiome in colonies reared from wild larvae, collected from fruit, for five generations, on a gel-based larval diet. Beta diversity analysis showed that the bacterial communities from Generation 5 (G5) clustered separately from earlier generations. At the genus level, bacterial communities were significantly different between the generations and mostly altered at G5. However, communities were found similar at phyla to family taxonomic levels. We observed high abundance of Morganella and Burkholderia at the genus level in the larval and pupal stages respectively at G5, but these were not detected in earlier generations. Overall, our findings demonstrate that the domestication process strongly affects the Qfly microbiome and prompts questions about the functional relationship between the Qfly and its microbiome, as well as implications for the performance of insects that have been domesticated and mass-reared for SIT programs.

14.
Sci Rep ; 12(1): 153, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997097

RESUMEN

Females of many insect species are unreceptive to remating for a period following their first mating. This inhibitory effect may be mediated by either the female or her first mate, or both, and often reflects the complex interplay of reproductive strategies between the sexes. Natural variation in remating inhibition and how this phenotype responds to captive breeding are largely unexplored in insects, including many pest species. We investigated genetic variation in remating propensity in the Queensland fruit fly, Bactrocera tryoni, using strains differing in source locality and degree of domestication. We found up to threefold inherited variation between strains from different localities in the level of intra-strain remating inhibition. The level of inhibition also declined significantly during domestication, which implied the existence of genetic variation for this trait within the starting populations as well. Inter-strain mating and remating trials showed that the strain differences were mainly due to the genotypes of the female and, to a lesser extent, the second male, with little effect of the initial male genotype. Implications for our understanding of fruit fly reproductive biology and population genetics and the design of Sterile Insect Technique pest management programs are discussed.


Asunto(s)
Domesticación , Conducta Sexual Animal , Tephritidae/fisiología , Animales , Femenino , Variación Genética , Genotipo , Herencia , Masculino , Fenotipo , Densidad de Población , Crecimiento Demográfico , Reproducción , Tephritidae/genética
15.
Insect Sci ; 29(4): 1159-1169, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34957684

RESUMEN

Multiple mating by females, polyandry, is common in insects, including in tephritid fruit flies. Female insects that remate commonly store sperm of multiple males. How the sperm of different males contribute to paternity is an important element of sexual selection. Sexual behavior and reproduction of the Queensland fruit fly (Qfly), Bactrocera tryoni, has been extensively investigated both in relation to understanding this economically important species' reproductive biology and in relation to implications for Sterile Insect Technique (SIT), whereby sterile flies are released to constrain reproduction of pest populations. Despite numerous studies of pre- and postcopulatory sexual selection in Qfly, there have been no direct studies of paternity patterns in polyandrous female Qflies. We used two morphologically distinguishable lines to investigate patterns of sperm use in Qfly. The two lines showed comparable mating performance evidenced by similar mating and remating frequency, copula duration, and proportion of second mate paternity (P2) between reciprocal crosses. The mechanism of sperm usage, with P2 close to 0.5 immediately after the second mating followed by gradual decrease of P2 as females aged, is most consistent with stratification or repositioning of sperm. Patterns observed in the present study are compared with the available information from other tephritid fruit flies, and are discussed in relation to this species' reproductive biology, known patterns of sperm storage, and SIT.


Asunto(s)
Tephritidae , Animales , Femenino , Masculino , Reproducción , Semen , Conducta Sexual Animal , Espermatozoides
16.
J Insect Physiol ; 136: 104340, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838789

RESUMEN

Juvenile hormone is an important regulator of sexual development in insects, and application of methoprene, a juvenile hormone analogue, together with access to a protein-rich diet, has been found to accelerate sexual maturation of several tephritid fruit fly species including Queensland fruit fly Bactrocera tryoni ('Q-fly'). Such accelerated development is a potentially valuable means to increase participation of released males in sterile insect technique programs. However, there is a risk that benefits of accelerated maturation might be countered by increased vulnerability to starvation and desiccation. The present study investigates this possibility. After emergence, flies were treated with three levels of methoprene (0, 0.05%, and 0.5%) incorporated into a diet of sugar and yeast hydrolysate for two days after emergence. Survival of groups and individual flies was assessed under conditions of food stress, food and water stress, and ad libitum access to diet, and survival of individual flies was also assessed under desiccation stress. Most flies provided ad libitum access to diet were still alive at 7 days, whereas all stressed flies died within 4 days. Desiccation stressed flies had the shortest survival followed by food and water stress, and then food stress. Methoprene supplements increased susceptibility of flies to each stress. Flies subjected to food and water stress had the least lipid reserves at death, whereas flies subjected to desiccation stress retained the least water reserves. To investigate mechanisms that might underlie reduced survival under stress; we also quantified activity level of flies that were subjected to food and water stress and desiccation stress. Activity level was greater for flies provided methoprene, but did not vary with stress type or sex, suggesting that increased vulnerability of flies to stress is related to elevated metabolism associated with elevated activity. Deleterious effects of methoprene supplements on stress tolerance indicate a need for careful consideration of the conditions that will be encountered by flies in the field before deploying methoprene as a pre-release treatment in Q-fly sterile insect technique programs.


Asunto(s)
Metopreno , Tephritidae , Animales , Desecación , Masculino , Saccharomyces cerevisiae , Maduración Sexual
17.
J Insect Physiol ; 133: 104289, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34332969

RESUMEN

Polyandry, whereby females mate with more than one male in a reproductive cycle, can result in sperm competition or cryptic female choice, and have fitness implications for both sexes. Understanding patterns of sperm storage in twice-mated females can provide valuable insights to mechanisms that mediate sperm use and paternity. In the Queensland fruit fly, Bactrocera tryoni (Qfly), and other insects that are managed by the Sterile Insect Technique (SIT), polyandry can reduce the efficacy of this pest control method. Patterns of sperm storage in twice-mated Qflies were studied by developing three fly lines that are homozygous for different alleles of a microsatellite marker (Bt32) and using a combination of quantitative real time polymerase chain reaction (qPCR) and capillary electrophoresis-based techniques to quantify and genotype sperm in each spermatheca. Female Qflies consistently stored fewer sperm from their second mate than from their first mate. Further, asymmetry between the spermathecae in the distribution of sperm stored from the first mate appears to in part determine the distribution of sperm stored from the second mate, likely because of constraints in storage capacity in the two spermathecae. Implications of these findings for elucidating pattern of sperm competition in this species, and for SIT, are discussed.


Asunto(s)
Espermatozoides/fisiología , Tephritidae/fisiología , Animales , Femenino , Masculino , Reproducción
18.
Molecules ; 26(16)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34443611

RESUMEN

Pheromones are biologically important in fruit fly mating systems, and also have potential applications as attractants or mating disrupters for pest management. Bactrocera kraussi (Hardy) (Diptera: Tephritidae) is a polyphagous pest fruit fly for which the chemical profile of rectal glands is available for males but not for females. There have been no studies of the volatile emissions of either sex or of electrophysiological responses to these compounds. The present study (i) establishes the chemical profiles of rectal gland contents and volatiles emitted by both sexes of B. kraussi by gas chromatography-mass spectrometry (GC-MS) and (ii) evaluates the detection of the identified compounds by gas chromatography-electroantennogram detection (GC-EAD) and -electropalpogram detection (GC-EPD). Sixteen compounds are identified in the rectal glands of male B. kraussi and 29 compounds are identified in the rectal glands of females. Of these compounds, 5 were detected in the headspace of males and 13 were detected in the headspace of females. GC-EPD assays recorded strong signals in both sexes against (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, 2-ethyl-7-mehtyl-1,6-dioxaspiro[4.5]decane isomer 2, (E,Z)/(Z,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, and (Z,Z)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane. Male antennae responded to (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, 2-methyl-6-pentyl-3,4-dihydro-2H-pyran, 6-hexyl-2-methyl-3,4-dihydro-2H-pyran, 6-oxononan-1-ol, ethyl dodecanoate, ethyl tetradecanoate and ethyl (Z)-hexadec-9-enoate, whereas female antennae responded to (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane and 2-methyl-6-pentyl-3,4-dihydro-2H-pyran only. These compounds are candidates as pheromones mediating sexual interactions in B. kraussi.


Asunto(s)
Fenómenos Electrofisiológicos , Recto/metabolismo , Tephritidae , Compuestos Orgánicos Volátiles/metabolismo , Animales , Femenino , Masculino
19.
J Econ Entomol ; 114(5): 2147-2154, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34324680

RESUMEN

The sterile insect technique (SIT) is a sustainable pest management tool based on the release of millions of sterile insects that suppress reproduction in targeted populations. Success of SIT depends on survival, maturation, dispersal, and mating of released sterile insects. Laboratory and field cage studies have demonstrated that dietary supplements of methoprene and raspberry ketone (RK) promote sexual maturation of adult Queensland fruit fly, Bactrocera tryoni (Froggatt), and may hence shorten the delay between release and maturity in the field. We investigated the effects of methoprene and RK dietary supplements on field abundance of sexually mature sterile Q-flies relative to untreated flies fed only sugar and yeast hydrolysate before release at 2 d of age. Compared with untreated flies, more methoprene- and RK-treated flies were recaptured in cuelure traps to which only sexually mature males are attracted. At distances of 100 and 200 m from the release point, recapture rates were higher for methoprene- and RK-treated flies than for untreated flies, but at 300 m recapture rates were low and were similar for treated and untreated flies. Rainfall, relative humidity, wind speed, and wind direction did not affect recapture rates, but temperature was positively correlated with recapture rates for all treatments. There was a strong correlation between the number of sterile and wild flies caught in traps, indicating co-location in the field. Dietary supplements of methoprene and RK can substantially increase abundance of sexually mature sterile male Q-flies in the field following release as 2-d-old immature adults.


Asunto(s)
Tephritidae , Animales , Butanonas , Suplementos Dietéticos , Masculino , Metopreno , Saccharomyces cerevisiae
20.
Sci Rep ; 11(1): 13010, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155249

RESUMEN

Insects tend to live within well-defined habitats, and at smaller scales can have distinct microhabitat preferences. These preferences are important, but often overlooked, in applications of the sterile insect technique. Different microhabitat preferences of sterile and wild insects may reflect differences in environmental tolerance and may lead to spatial separation in the field, both of which may reduce the control program efficiency. In this study, we compared the diurnal microhabitat distributions of mass-reared (fertile and sterile) and wild Queensland fruit flies, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Flies were individually tagged and released into field cages containing citrus trees. We recorded their locations in the canopies (height from ground, distance from canopy center), behavior (resting, grooming, walking, feeding), and the abiotic conditions on occupied leaves (temperature, humidity, light intensity) throughout the day. Flies from all groups moved lower in the canopy when temperature and light intensity were high, and humidity was low; lower canopy regions provided shelter from these conditions. Fertile and sterile mass-reared flies of both sexes were generally lower in the canopies than wild flies. Flies generally fed from the top sides of leaves that were lower in the canopy, suggesting food sources in these locations. Our observations suggest that mass-reared and wild B. tryoni occupy different locations in tree canopies, which could indicate different tolerances to environmental extremes and may result in spatial separation of sterile and wild flies when assessed at a landscape scale.


Asunto(s)
Control de Insectos , Microclima , Tephritidae , Análisis de Varianza , Animales , Conducta Animal , Ambiente , Femenino , Control de Insectos/métodos , Especies Introducidas , Masculino , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...