Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Virology ; 496: 186-193, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27336950

RESUMEN

West Nile virus (WNV) is a flavivirus that swept rapidly across North America in 1999, declined in prevalence, and then resurged in 2012. To date, no vaccine is available to prevent infection in the human population. Herpes simplex virus (HSV) replication-defective vaccine vectors induce a durable immunity characterized by strong antibody and CD8(+) T cell responses even in HSV-immune animals. In this study, a WNV protein expression cassette was optimized for virus-like particle (VLP) production in transfection studies, and the cassette was recombined into an HSV-1 d106-WNV virus vector, which produced extracellular VLPs, as confirmed by immunoelectron microscopy. Immunization of mice with the d106-WNV recombinant vector elicited a specific anti-WNV IgG response. This study highlights the flavivirus coding sequences needed for efficient assembly of virus-like particles. This information will facilitate generation of additional vaccine vectors against other flaviviruses including the recently emerged Zika virus.


Asunto(s)
Vectores Genéticos/genética , Herpesvirus Humano 1/genética , Vacunas de Partículas Similares a Virus/genética , Proteínas Estructurales Virales/genética , Virus del Nilo Occidental/genética , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Cápside/inmunología , Cápside/ultraestructura , Línea Celular , Orden Génico , Humanos , Inmunización , Ratones , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/ultraestructura , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/inmunología , Virus del Nilo Occidental/inmunología
2.
Methods Mol Biol ; 515: 239-48, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19378129

RESUMEN

The localization pattern of the seven herpes simplex virus (HSV) DNA replication proteins is dependent upon the status of viral DNA synthesis in the infected cell. Normally, the replication proteins accumulate within replication compartments, which expand as viral DNA synthesis increases. If viral replication is blocked, either by the addition of drugs or a genetic lesion, prereplicative sites are observed. Observing the distribution of a GFP-tagged HSV replication protein can monitor the progression of viral replication. Here, we demonstrate the use of an ICP8-GFP fusion protein to observe the status of HSV replication in cultured cells by the formation of viral replication compartments.


Asunto(s)
Genes Reporteros/genética , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/metabolismo , Simplexvirus/fisiología , Replicación Viral , Animales , Línea Celular , Supervivencia Celular , Chlorocebus aethiops , Proteínas Fluorescentes Verdes/genética , Factores de Tiempo
3.
Virology ; 366(2): 340-8, 2007 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-17544048

RESUMEN

Small molecules can provide valuable tools to investigate virus biology. We developed a chemical screening approach to identify small molecule inhibitors of poorly understood, pre-early gene expression steps in herpes simplex virus infection, using green fluorescent protein fused to an early protein. Our assay identified ouabain, a cardiac glycoside. Ouabain reversibly decreased viral yield by 100-fold without affecting cellular metabolic activity in an overnight assay. The antiviral potencies of other cardiac glycosides correlated with their potencies against the known target of these compounds, the cellular sodium potassium ATPase. Ouabain had a reduced effect if added 8 h post-infection. It did not inhibit viral attachment or entry, but did reduce the expression of viral immediate-early and early genes by at least 5-fold. Collectively, these results implicate a cellular target that was hitherto not considered important for a stage of HSV replication prior to viral gene expression.


Asunto(s)
Antivirales/farmacología , Técnicas Químicas Combinatorias , Ouabaína/farmacología , Simplexvirus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Chlorocebus aethiops , Expresión Génica/efectos de los fármacos , Genes Virales , Simplexvirus/fisiología , Factores de Tiempo , Células Vero , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
4.
Virology ; 331(1): 94-105, 2005 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-15582656

RESUMEN

Herpes simplex virus 1 (HSV-1) ICP27 and ICP8 proteins have both been implicated in the transcription of late genes and regulation of viral gene expression. We showed previously that ICP27 and ICP8 associate with the RNAP II holoenzyme (Zhou and Knipe, J. Virol. 76, 5893-5904). Here, we demonstrate that ICP27 and ICP8 coprecipitate from lysates of HSV-1-infected HEp2 cells and from lysates of insect cells expressing ICP27 and ICP8, the latter being in the absence of other HSV-1 proteins. By expressing and purifying hexahistidine-tagged ICP8 (His-ICP8) and maltose binding protein (MBP)-tagged ICP27 (MBP-27) proteins and performing in vitro immunoprecipitation and pull-down assays, we also demonstrate that ICP27 and ICP8 coprecipitate in the absence of other viral or cellular proteins. Taken together, these data provide evidence that ICP27 and ICP8 interact directly in vitro and in infected cells. We hypothesize that the ICP27-ICP8 interaction plays a role in the stimulation of late gene transcription.


Asunto(s)
Herpesvirus Humano 1/fisiología , Proteínas Inmediatas-Precoces/fisiología , Proteínas Virales/fisiología , Animales , Línea Celular , Proteínas de Unión al ADN , Regulación Viral de la Expresión Génica/fisiología , Herpesvirus Humano 1/química , Humanos , Proteínas Inmediatas-Precoces/análisis , Inmunoprecipitación , Proteínas Virales/análisis
5.
Virology ; 330(2): 487-92, 2004 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-15567442

RESUMEN

The herpes simplex virus (HSV) immediate early ICP27 protein plays an essential role in stimulating viral early and late gene expression. ICP27 appears to be multifunctional in that it has been reported to stimulate viral late gene transcription, polyadenylation site usage, and RNA export. We report here on proteomic studies involving immunoprecipitation of ICP27 and mass spectrometric identification of co-precipitated proteins. These studies show an association of ICP27 with the cellular translation initiation factors poly A binding protein (PABP), eukaryotic initiation factor 3 (eIF3), and eukaryotic initiation factor 4G (eIF4G) in infected cells. Immunoprecipitation-western blot studies confirmed these associations. Finally, purified MBP-tagged ICP27 (MBP-27) can interact with eIF3 subunits p47 and p116 in vitro. These results suggest that ICP27 may also play a role in stimulating translation of certain viral and host mRNAs and/or in inhibiting host mRNA translation.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Mapeo de Interacción de Proteínas , Simplexvirus/fisiología , Western Blotting , Línea Celular , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Humanos , Inmunoprecipitación , Espectrometría de Masas , Proteínas de Unión a Poli(A)/metabolismo , Subunidades de Proteína/metabolismo
6.
J Virol ; 78(11): 5856-66, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15140983

RESUMEN

In this study, we have used immunoprecipitation and mass spectrometry to identify over 50 cellular and viral proteins that are associated with the herpes simplex virus 1 (HSV-1) ICP8 single-stranded DNA-binding protein. Many of the coprecipitating cellular proteins are known members of large cellular complexes involved in (i) DNA replication or damage repair, including RPA and MSH6; (ii) nonhomologous and homologous recombination, including the catalytic subunit of the DNA-dependent protein kinase, Ku86, and Rad50; and (iii) chromatin remodeling, including BRG1, BRM, hSNF2H, BAF155, mSin3a, and histone deacetylase 2. It appears that DNA mediates the association of certain proteins with ICP8, while more direct protein-protein interactions mediate the association with other proteins. A number of these proteins accumulate in viral replication compartments in the infected cell nucleus, indicating that these proteins may have a role in viral replication. WRN, which functions in cellular recombination pathways via its helicase and exonuclease activities, is not absolutely required for viral replication, as viral yields are only very slightly, if at all, decreased in WRN-deficient human primary fibroblasts compared to control cells. In Ku70-deficient murine embryonic fibroblasts, viral yields are increased by almost 50-fold, suggesting that the cellular nonhomologous end-joining pathway inhibits HSV replication. We hypothesize that some of the proteins coprecipitating with ICP8 are involved in HSV replication and may give new insight into viral replication mechanisms.


Asunto(s)
Ensamble y Desensamble de Cromatina , Reparación del ADN , Replicación del ADN , Herpesvirus Humano 1/fisiología , Proteómica , Recombinación Genética , Proteínas Virales/fisiología , Replicación Viral , Animales , Antígenos Nucleares/fisiología , Chlorocebus aethiops , ADN/fisiología , ADN Helicasas/fisiología , Proteínas de Unión al ADN/fisiología , Exodesoxirribonucleasas , Humanos , Autoantígeno Ku , RecQ Helicasas , Células Vero , Helicasa del Síndrome de Werner
7.
Virology ; 309(2): 219-31, 2003 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-12758170

RESUMEN

The herpes simplex virus single-stranded DNA-binding protein, ICP8, localizes initially to structures in the nucleus called prereplicative sites. As replication proceeds, these sites mature into large globular structures called replication compartments. The details of what signals or proteins are involved in the redistribution of viral and cellular proteins within the nucleus between prereplicative sites and replication compartments are poorly understood; however, we showed previously that the dominant-negative d105 ICP8 does not localize to prereplicative sites and prevents the localization of other viral proteins to prereplicative sites (J. Virol. 74 (2000) 10122). Within the residues deleted in d105 (1083 to 1168), we identified a region between amino acid residues 1080 and 1135 that was predicted by computer models to contain two alpha-helices, one with considerable amphipathic nature. We used site-specific and random mutagenesis techniques to identify residues or structures within this region that are required for proper ICP8 localization within the nucleus. Proline substitutions in the predicted helix generated ICP8 molecules that did not localize to prereplicative sites and acted as dominant-negative inhibitors. Other substitutions that altered the charged residues in the predicted alpha-helix to alanine or leucine residues had little or no effect on ICP8 intranuclear localization. The predicted alpha-helix was dispensable for the interaction of ICP8 with the U(L)9 origin-binding protein. We propose that this C-terminal alpha-helix is required for localization of ICP8 to prereplicative sites by binding viral or cellular factors that target or retain ICP8 at specific intranuclear sites.


Asunto(s)
Núcleo Celular/metabolismo , Simplexvirus/fisiología , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Núcleo Celular/virología , Chlorocebus aethiops , Proteínas de Unión al ADN/metabolismo , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Datos de Secuencia Molecular , Mutación Puntual , Prolina , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Células Vero , Proteínas Virales/genética , Replicación Viral
8.
Virology ; 309(2): 232-47, 2003 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-12758171

RESUMEN

Herpes simplex virus (HSV) uses intranuclear compartmentalization to concentrate the viral and cellular factors required for the progression of the viral life cycle. Processes as varied as viral DNA replication, late gene expression, and capsid assembly take place within discrete structures within the nucleus called replication compartments. Replication compartments are hypothesized to mature from a few distinct structures, called prereplicative sites, that form adjacent to cellular nuclear matrix-associated ND10 sites. During productive infection, the HSV single-stranded DNA-binding protein ICP8 localizes to replication compartments. To further the understanding of replication compartment maturation, we have constructed and characterized a recombinant HSV-1 strain that expresses an ICP8 molecule with green fluorescent protein (GFP) fused to its C terminus. In transfected Vero cells that were infected with HSV, the ICP8-GFP protein localized to prereplicative sites in the presence of the viral DNA synthesis inhibitor phosphonoacetic acid (PAA) or to replication compartments in the absence of PAA. A recombinant HSV-1 strain expressing the ICP8-GFP virus replicated in Vero cells, but the yield was increased by 150-fold in an ICP8-complementing cell line. Using the ICP8-GFP protein as a marker for replication compartments, we show here that these structures start as punctate structures early in infection and grow into large, globular structures that eventually fill the nucleus. Large replication compartments were formed by small structures that either moved through the nucleus to merge with adjacent compartments or remained relatively stationary within the nucleus and grew by accretion and fused with neighboring structures.


Asunto(s)
Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Herpesvirus Humano 1/fisiología , Replicación Viral , Animales , Compartimento Celular , Línea Celular , Núcleo Celular/virología , Chlorocebus aethiops , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Fluorescentes Verdes , Herpesvirus Humano 1/genética , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía por Video , Mutación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Células Vero , Proteínas Virales/genética , Proteínas Virales/metabolismo
9.
Front Biosci ; 7: d752-64, 2002 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11861220

RESUMEN

Herpes simplex virus (HSV) commonly causes human infections in the orofacial region (HSV-1) and in the genital region (HSV-2). Productive viral infection in mucosal epithelial cells may result in clinical symptoms and is followed by a latent infection within sensory neurons. During productive infection a large number of viral gene products are expressed while during latent infection few or no viral proteins are expressed. Reactivation from latency results in recurrent infections and disease at or near the primary site of infection. Understanding the details of the two stages of the HSV life cycle is a particular focus of current research on HSV. The virus interacts with and modifies numerous host cell functions in both epithelial and neuronal cells, and studies of HSV have enhanced our knowledge of many fundamental processes in eukaryotic cells. Ongoing research continues to uncover novel effects of HSV on cells, and a complete understanding of HSV infection during both productive and latent infection should allow the design of new antiviral agents and vaccines and increased knowledge of basic cell and molecular biology. This review article is designed to provide an introduction to HSV biology and key aspects of the infection cycle.


Asunto(s)
Herpes Simple/virología , Simplexvirus/fisiología , Animales , Regulación Viral de la Expresión Génica/genética , Regulación Viral de la Expresión Génica/fisiología , Genoma Viral , Herpes Simple/genética , Humanos , Simplexvirus/genética , Simplexvirus/patogenicidad , Virión/genética , Virión/patogenicidad , Virión/fisiología , Ensamble de Virus/genética , Ensamble de Virus/fisiología , Latencia del Virus/genética , Latencia del Virus/fisiología , Replicación Viral/genética , Replicación Viral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...