Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
IEEE Trans Med Imaging ; PP2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865220

RESUMEN

Minimally invasive surgery (MIS) remains technically demanding due to the difficulty of tracking hidden critical structures within the moving anatomy of the patient. In this study, we propose a soft tissue deformation tracking augmented reality (AR) navigation pipeline for laparoscopic surgery of the kidneys. The proposed navigation pipeline addresses two main sub-problems: the initial registration and deformation tracking. Our method utilizes preoperative MR or CT data and binocular laparoscopes without any additional interventional hardware. The initial registration is resolved through a probabilistic rigid registration algorithm and elastic compensation based on dense point cloud reconstruction. For deformation tracking, the sparse feature point displacement vector field continuously provides temporal boundary conditions for the biomechanical model. To enhance the accuracy of the displacement vector field, a novel feature points selection strategy based on deep learning is proposed. Moreover, an ex-vivo experimental method for internal structures error assessment is presented. The ex-vivo experiments indicate an external surface reprojection error of 4.07 ± 2.17mm and a maximum mean absolutely error for internal structures of 2.98mm. In-vivo experiments indicate mean absolutely error of 3.28 ± 0.40mm and 1.90±0.24mm, respectively. The combined qualitative and quantitative findings indicated the potential of our AR-assisted navigation system in improving the clinical application of laparoscopic kidney surgery.

2.
Comput Methods Programs Biomed ; 250: 108158, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604010

RESUMEN

BACKGROUND AND OBJECTIVE: In radiotherapy treatment planning, respiration-induced motion introduces uncertainty that, if not appropriately considered, could result in dose delivery problems. 4D cone-beam computed tomography (4D-CBCT) has been developed to provide imaging guidance by reconstructing a pseudo-motion sequence of CBCT volumes through binning projection data into breathing phases. However, it suffers from artefacts and erroneously characterizes the averaged breathing motion. Furthermore, conventional 4D-CBCT can only be generated post-hoc using the full sequence of kV projections after the treatment is complete, limiting its utility. Hence, our purpose is to develop a deep-learning motion model for estimating 3D+t CT images from treatment kV projection series. METHODS: We propose an end-to-end learning-based 3D motion modelling and 4DCT reconstruction model named 4D-Precise, abbreviated from Probabilistic reconstruction of image sequences from CBCT kV projections. The model estimates voxel-wise motion fields and simultaneously reconstructs a 3DCT volume at any arbitrary time point of the input projections by transforming a reference CT volume. Developing a Torch-DRR module, it enables end-to-end training by computing Digitally Reconstructed Radiographs (DRRs) in PyTorch. During training, DRRs with matching projection angles to the input kVs are automatically extracted from reconstructed volumes and their structural dissimilarity to inputs is penalised. We introduced a novel loss function to regulate spatio-temporal motion field variations across the CT scan, leveraging planning 4DCT for prior motion distribution estimation. RESULTS: The model is trained patient-specifically using three kV scan series, each including over 1200 angular/temporal projections, and tested on three other scan series. Imaging data from five patients are analysed here. Also, the model is validated on a simulated paired 4DCT-DRR dataset created using the Surrogate Parametrised Respiratory Motion Modelling (SuPReMo). The results demonstrate that the reconstructed volumes by 4D-Precise closely resemble the ground-truth volumes in terms of Dice, volume similarity, mean contour distance, and Hausdorff distance, whereas 4D-Precise achieves smoother deformations and fewer negative Jacobian determinants compared to SuPReMo. CONCLUSIONS: Unlike conventional 4DCT reconstruction techniques that ignore breath inter-cycle motion variations, the proposed model computes both intra-cycle and inter-cycle motions. It represents motion over an extended timeframe, covering several minutes of kV scan series.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Tomografía Computarizada Cuatridimensional , Planificación de la Radioterapia Asistida por Computador , Respiración , Tomografía Computarizada Cuatridimensional/métodos , Humanos , Tomografía Computarizada de Haz Cónico/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Movimiento , Movimiento (Física) , Aprendizaje Profundo
3.
APL Bioeng ; 7(3): 036102, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37426382

RESUMEN

How prevalent is spontaneous thrombosis in a population containing all sizes of intracranial aneurysms? How can we calibrate computational models of thrombosis based on published data? How does spontaneous thrombosis differ in normo- and hypertensive subjects? We address the first question through a thorough analysis of published datasets that provide spontaneous thrombosis rates across different aneurysm characteristics. This analysis provides data for a subgroup of the general population of aneurysms, namely, those of large and giant size (>10 mm). Based on these observed spontaneous thrombosis rates, our computational modeling platform enables the first in silico observational study of spontaneous thrombosis prevalence across a broader set of aneurysm phenotypes. We generate 109 virtual patients and use a novel approach to calibrate two trigger thresholds: residence time and shear rate, thus addressing the second question. We then address the third question by utilizing this calibrated model to provide new insight into the effects of hypertension on spontaneous thrombosis. We demonstrate how a mechanistic thrombosis model calibrated on an intracranial aneurysm cohort can help estimate spontaneous thrombosis prevalence in a broader aneurysm population. This study is enabled through a fully automatic multi-scale modeling pipeline. We use the clinical spontaneous thrombosis data as an indirect population-level validation of a complex computational modeling framework. Furthermore, our framework allows exploration of the influence of hypertension in spontaneous thrombosis. This lays the foundation for in silico clinical trials of cerebrovascular devices in high-risk populations, e.g., assessing the performance of flow diverters in aneurysms for hypertensive patients.

4.
Phys Eng Sci Med ; 46(2): 719-734, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37014577

RESUMEN

We propose an algorithm for rigid registration of pre- and intra-operative patient anatomy, represented as pointclouds, during minimally invasive surgery. This capability is essential for development of augmented reality systems for guiding such interventions. Key challenges in this context are differences in the point density in the pre- and intra-operative pointclouds, and potentially low spatial overlap between the two. Solutions, correspondingly, must be robust to both of these phenomena. We formulated a pointclouds registration approach which considers the pointclouds after rigid transformation to be observations of a global non-parametric probabilistic model named Dirichlet Process Gaussian Mixture Model. The registration problem is solved by minimizing the Kullback-Leibler divergence in a variational Bayesian inference framework. By this means, all unknown parameters are recursively inferred, including, importantly, the optimal number of mixture model components, which ensures the model complexity efficiently matches that of the observed data. By presenting the pointclouds as KDTrees, both the data and model are expanded in a coarse-to-fine style. The scanning weight of each point is estimated by its neighborhood, imparting the algorithm with robustness to point density variations. Experiments on several datasets with different levels of noise, outliers and pointcloud overlap show that our method has a comparable accuracy, but higher efficiency than existing Gaussian Mixture Model methods, whose performance is sensitive to the number of model components.


Asunto(s)
Algoritmos , Modelos Estadísticos , Humanos , Teorema de Bayes
6.
Med Image Anal ; 83: 102678, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36403308

RESUMEN

Deformable image registration (DIR) can be used to track cardiac motion. Conventional DIR algorithms aim to establish a dense and non-linear correspondence between independent pairs of images. They are, nevertheless, computationally intensive and do not consider temporal dependencies to regulate the estimated motion in a cardiac cycle. In this paper, leveraging deep learning methods, we formulate a novel hierarchical probabilistic model, termed DragNet, for fast and reliable spatio-temporal registration in cine cardiac magnetic resonance (CMR) images and for generating synthetic heart motion sequences. DragNet is a variational inference framework, which takes an image from the sequence in combination with the hidden states of a recurrent neural network (RNN) as inputs to an inference network per time step. As part of this framework, we condition the prior probability of the latent variables on the hidden states of the RNN utilised to capture temporal dependencies. We further condition the posterior of the motion field on a latent variable from hierarchy and features from the moving image. Subsequently, the RNN updates the hidden state variables based on the feature maps of the fixed image and the latent variables. Different from traditional methods, DragNet performs registration on unseen sequences in a forward pass, which significantly expedites the registration process. Besides, DragNet enables generating a large number of realistic synthetic image sequences given only one frame, where the corresponding deformations are also retrieved. The probabilistic framework allows for computing spatio-temporal uncertainties in the estimated motion fields. Our results show that DragNet performance is comparable with state-of-the-art methods in terms of registration accuracy, with the advantage of offering analytical pixel-wise motion uncertainty estimation across a cardiac cycle and being a motion generator. We will make our code publicly available.

7.
Ann Biomed Eng ; 51(1): 174-188, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36104641

RESUMEN

Finite element models (FEMs) of the spine commonly use a limited number of simplified geometries. Nevertheless, the geometric features of the spine are important in determining its FEM outcomes. The link between a spinal segment's shape and its biomechanical response has been studied, but the co-variances of the shape features have been omitted. We used a principal component (PCA)-based statistical shape modelling (SSM) approach to investigate the contribution of shape features to the intradiscal pressure (IDP) and the facets contact pressure (FCP) in a cohort of synthetic L4/L5 functional spinal units under axial compression. We quantified the uncertainty in the FEM results, and the contribution of individual shape modes to these results. This parameterisation approach is able to capture the variability in the correlated anatomical features in a real population and sample plausible synthetic geometries. The first shape mode ([Formula: see text]) explained 22.6% of the shape variation in the subject-specific cohort used to train the SSM, and had the largest correlation with, and contribution to IDP (17%) and FCP (11%). The largest geometric variation in ([Formula: see text]) was in the annulus-nucleus ratio.


Asunto(s)
Disco Intervertebral , Vértebras Lumbares , Humanos , Fenómenos Biomecánicos , Presión , Modelos Estadísticos , Análisis de Elementos Finitos , Disco Intervertebral/fisiología , Rango del Movimiento Articular
8.
Comput Med Imaging Graph ; 94: 101995, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34656811

RESUMEN

Real-time augmented reality (AR) for minimally invasive surgery without extra tracking devices is a valuable yet challenging task, especially considering dynamic surgery environments. Multiple different motions between target organs are induced by respiration, cardiac motion or operative tools, and often must be characterized by a moving, manually positioned endoscope. Therefore, a 6DoF motion tracking method that takes advantage of the latest 2D target tracking methods and non-linear pose optimization and tracking loss retrieval in SLAM technologies is proposed and can be embedded into such an AR system. Specifically, the SiamMask deep learning-based target tracking method is incorporated to roughly exclude motion distractions and enable frame matching. This algorithm's light computation cost makes it possible for the proposed method to run in real-time. A global map and a set of keyframes as in ORB-SLAM are maintained for pose optimization and tracking loss retrieval. The stereo matching and frame matching methods are improved and a new strategy to select reference frames is introduced to make the first-time motion estimation of every arriving frame as accurate as possible. Experiments on both a clinical laparoscopic partial nephrectomy dataset and an ex-vivo porcine kidney dataset are conducted. The results show that the proposed method gives a more robust and accurate performance compared with ORB-SLAM2 in the presence of motion distractions or motion blur; however, heavy smoke still remains a big factor that reduces the tracking accuracy.


Asunto(s)
Realidad Aumentada , Imagenología Tridimensional , Algoritmos , Animales , Endoscopía/métodos , Imagenología Tridimensional/métodos , Movimiento (Física) , Porcinos
9.
Med Image Anal ; 53: 47-63, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30684740

RESUMEN

A probabilistic framework for registering generalised point sets comprising multiple voxel-wise data features such as positions, orientations and scalar-valued quantities, is proposed. It is employed for the analysis of magnetic resonance diffusion tensor image (DTI)-derived quantities, such as fractional anisotropy (FA) and fibre orientation, across multiple subjects. A hybrid Student's t-Watson-Gaussian mixture model-based non-rigid registration framework is formulated for the joint registration and clustering of voxel-wise DTI-derived data, acquired from multiple subjects. The proposed approach jointly estimates the non-rigid transformations necessary to register an unbiased mean template (represented as a 7-dimensional hybrid point set comprising spatial positions, fibre orientations and FA values) to white matter regions of interest (ROIs), and approximates the joint distribution of voxel spatial positions, their associated principal diffusion axes, and FA. Specific white matter ROIs, namely, the corpus callosum and cingulum, are analysed across healthy control (HC) subjects (K = 20 samples) and patients diagnosed with mild cognitive impairment (MCI) (K = 20 samples) or Alzheimer's disease (AD) (K = 20 samples) using the proposed framework, facilitating inter-group comparisons of FA and fibre orientations. Group-wise analyses of the latter is not afforded by conventional approaches such as tract-based spatial statistics (TBSS) and voxel-based morphometry (VBM).


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Interpretación de Imagen Asistida por Computador/métodos , Algoritmos , Anisotropía , Cuerpo Calloso/diagnóstico por imagen , Humanos , Sustancia Blanca/diagnóstico por imagen
10.
Acta Bioeng Biomech ; 20(4): 59-67, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30520447

RESUMEN

PURPOSE: Residual stress has a great influence on the mechanical behaviour of arterial wall. Numerous research groups used the Uniform Stress Hypothesis to allow the inclusion of the effects of residual stress when computing stress distributions in the arterial wall. Nevertheless, the available methods used for this purpose are very computationally expensive, due to their iterative nature. In this paper we present a new method for including the effects of residual stress on the computed stress distribution in the arterial wall. METHODS: The new method, by using the Uniform Stress Hypothesis, enables computing the effect of residual stress by averaging stresses across the thickness of the arterial wall. RESULTS: Being a post-processing method for the computed stress distributions, the proposed method is computationally inexpensive, and thus, better suited for clinical applications than the previously used ones. CONCLUSIONS: The resulting stress distributions and values obtained using the proposed method based on the Uniform Stress Hypothesis are very close to the ones returned by an existing iterative method.


Asunto(s)
Arterias/fisiopatología , Modelos Cardiovasculares , Estrés Mecánico , Fenómenos Biomecánicos , Humanos
11.
Med Image Anal ; 44: 156-176, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29248842

RESUMEN

A probabilistic group-wise similarity registration technique based on Student's t-mixture model (TMM) and a multi-resolution extension of the same (mr-TMM) are proposed in this study, to robustly align shapes and establish valid correspondences, for the purpose of training statistical shape models (SSMs). Shape analysis across large cohorts requires automatic generation of the requisite training sets. Automated segmentation and landmarking of medical images often result in shapes with varying proportions of outliers and consequently require a robust method of alignment and correspondence estimation. Both TMM and mrTMM are validated by comparison with state-of-the-art registration algorithms based on Gaussian mixture models (GMMs), using both synthetic and clinical data. Four clinical data sets are used for validation: (a) 2D femoral heads (K= 1000 samples generated from DXA images of healthy subjects); (b) control-hippocampi (K= 50 samples generated from T1-weighted magnetic resonance (MR) images of healthy subjects); (c) MCI-hippocampi (K= 28 samples generated from MR images of patients diagnosed with mild cognitive impairment); and (d) heart shapes comprising left and right ventricular endocardium and epicardium (K= 30 samples generated from short-axis MR images of: 10 healthy subjects, 10 patients diagnosed with pulmonary hypertension and 10 diagnosed with hypertrophic cardiomyopathy). The proposed methods significantly outperformed the state-of-the-art in terms of registration accuracy in the experiments involving synthetic data, with mrTMM offering significant improvement over TMM. With the clinical data, both methods performed comparably to the state-of-the-art for the hippocampi and heart data sets, which contained few outliers. They outperformed the state-of-the-art for the femur data set, containing large proportions of outliers, in terms of alignment accuracy, and the quality of SSMs trained, quantified in terms of generalization, compactness and specificity.


Asunto(s)
Absorciometría de Fotón , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Cabeza Femoral/diagnóstico por imagen , Corazón/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Humanos , Hipertensión Pulmonar/diagnóstico por imagen , Modelos Estadísticos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Med Eng Phys ; 52: 22-30, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29269225

RESUMEN

Accurately determining the spatial relationship between the pelvis and acetabulum is challenging due to their inherently complex three-dimensional (3D) anatomy. A standardized 3D pelvic coordinate system (PCS) and the precise assessment of acetabular orientation would enable the relationship to be determined. We present a surface-based method to establish a reliable PCS and develop software for semi-automatic measurement of acetabular spatial parameters. Vertices on the acetabular rim were manually extracted as an eigenpoint set after 3D models were imported into the software. A reliable PCS consisting of the anterior pelvic plane, midsagittal pelvic plane, and transverse pelvic plane was then computed by iteration on mesh data. A spatial circle was fitted as a succinct description of the acetabular rim. Finally, a series of mutual spatial parameters between the pelvis and acetabulum were determined semi-automatically, including the center of rotation, radius, and acetabular orientation. Pelvic models were reconstructed based on high-resolution computed tomography images. Inter- and intra-rater correlations for measurements of mutual spatial parameters were almost perfect, showing our method affords very reproducible measurements. The approach will thus be useful for analyzing anatomic data and has potential applications for preoperative planning in individuals receiving total hip arthroplasty.


Asunto(s)
Acetábulo/anatomía & histología , Modelos Anatómicos , Pelvis/anatomía & histología , Estándares de Referencia , Análisis Espacial , Propiedades de Superficie
13.
Interface Focus ; 8(1): 20170019, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29285346

RESUMEN

There is emerging evidence suggesting that Alzheimer's disease is a vascular disorder, caused by impaired cerebral perfusion, which may be promoted by cardiovascular risk factors that are strongly influenced by lifestyle. In order to develop an understanding of the exact nature of such a hypothesis, a biomechanical understanding of the influence of lifestyle factors is pursued. An extended poroelastic model of perfused parenchymal tissue coupled with separate workflows concerning subject-specific meshes, permeability tensor maps and cerebral blood flow variability is used. The subject-specific datasets used in the modelling of this paper were collected as part of prospective data collection. Two cases were simulated involving male, non-smokers (control and mild cognitive impairment (MCI) case) during two states of activity (high and low). Results showed a marginally reduced clearance of cerebrospinal fluid (CSF)/interstitial fluid (ISF), elevated parenchymal tissue displacement and CSF/ISF accumulation and drainage in the MCI case. The peak perfusion remained at 8 mm s-1 between the two cases.

14.
J Mech Behav Biomed Mater ; 71: 95-105, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28284843

RESUMEN

In this paper, we study the dissection of arterial layers by means of a stiff, planar, penetrating external body (a 'wedge'), and formulate a novel model of the process using cohesive zone formalism. The work is motivated by a need for better understanding of, and numerical tools for simulating catheter-induced dissection, which is a potentially catastrophic complication whose mechanisms remain little understood. As well as the large deformations and rupture of the tissue, models of such a process must accurately capture the interaction between the tissue and the external body driving the dissection. The latter feature, in particular, distinguishes catheter-induced dissection from, for example, straightforward peeling, which is relatively well-studied. As a step towards such models, we study a scenario involving a geometrically simpler penetrating object (the wedge), which affords more reliable comparison with experimental observations, but which retains the key feature of dissection driven by an external body, as described. Particular emphasis is placed on assessing the reliability of cohesive zone approaches in this context. A series of wedge-driven dissection experiments on porcine aorta were undertaken, from which tissue elastic and fracture parameters were estimated. Finite element models of the experimental configuration, with tissue considered to be a hyperelastic medium, and evolution of tissue rupture modelled with a consistent large-displacement cohesive formulation, were then constructed. Model-predicted and experimentally measured reaction forces on the wedge throughout the dissection process were compared and found to agree well. The performance of the cohesive formulation in modelling externally driven dissection is finally assessed, and the prospects for numerical models of catheter-induced dissection using such approaches is considered.


Asunto(s)
Aorta/patología , Disección Aórtica/fisiopatología , Animales , Rotura de la Aorta/fisiopatología , Análisis de Elementos Finitos , Fenómenos Mecánicos , Reproducibilidad de los Resultados , Porcinos
15.
Med Image Anal ; 36: 113-122, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27894001

RESUMEN

Image registration is an essential technique to obtain point correspondences between anatomical structures from different images. Conventional non-rigid registration methods assume a continuous and smooth deformation field throughout the image. However, the deformation field at the interface of different organs is not necessarily continuous, since the organs may slide over or separate from each other. Therefore, imposing continuity and smoothness ubiquitously would lead to artifacts and increased errors near the discontinuity interface. In computational mechanics, the eXtended Finite Element Method (XFEM) was introduced to handle discontinuities without using computational meshes that conform to the discontinuity geometry. Instead, the interpolation bases themselves were enriched with discontinuous functional terms. Borrowing this concept, we propose a multiresolution eXtented Free-Form Deformation (XFFD) framework that seamlessly integrates within and extends the standard Free-Form Deformation (FFD) approach. Discontinuities are incorporated by enriching the B-spline basis functions coupled with extra degrees of freedom, which are only introduced near the discontinuity interface. In contrast with most previous methods, restricted to sliding motion, no ad hoc penalties or constraints are introduced to reduce gaps and overlaps. This allows XFFD to describe more general discontinuous motions. In addition, we integrate XFFD into a rigorously formulated multiresolution framework by introducing an exact parameter upsampling method. The proposed method has been evaluated in two publicly available datasets: 4D pulmonary CT images from the DIR-Lab dataset and 4D CT liver datasets. The XFFD achieved a Target Registration Error (TRE) of 1.17 ± 0.85 mm in the DIR-lab dataset and 1.94 ± 1.01 mm in the liver dataset, which significantly improves on the performance of the state-of-the-art methods handling discontinuities.


Asunto(s)
Artefactos , Tomografía Computarizada Cuatridimensional/métodos , Movimiento (Física) , Algoritmos , Humanos , Hígado/diagnóstico por imagen , Pulmón/diagnóstico por imagen
16.
Magn Reson Med ; 78(1): 341-356, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27416890

RESUMEN

PURPOSE: MR elastography (MRE) of the brain is being explored as a biomarker of neurodegenerative disease such as dementia. However, MRE measures for healthy brain have varied widely. Differing wave delivery methodologies may have influenced this, hence finite element-based simulations were performed to explore this possibility. METHODS: The natural frequencies of a series of cranial models were calculated, and MRE-associated vibration was simulated for different wave delivery methods at varying frequency, using simple isotropic viscoelastic material models for the brain. Displacement fields and the corresponding brain constitutive properties estimated by standard inversion techniques were compared across delivery methods and frequencies. RESULTS: The delivery methods produced widely different MRE displacement fields and inversions. Furthermore, resonances at natural frequencies influenced the displacement patterns. Consequently, some delivery methods led to lower inversion errors than others, and the error on the storage modulus varied by up to 11% between methods. CONCLUSION: Wave delivery has a considerable impact on brain MRE reliability. Assuming small variations in brain biomechanics, as recently reported to accompany neurodegenerative disease (e.g., 7% for Alzheimer's disease), the effect of wave delivery is important. Hence, a consensus should be established on a consistent methodology to ensure diagnostic and prognostic consistency. Magn Reson Med 78:341-356, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Neurológicos , Algoritmos , Simulación por Computador , Módulo de Elasticidad/fisiología , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resistencia al Corte/fisiología , Estrés Mecánico
17.
J Biomech ; 49(15): 3667-3675, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27743628

RESUMEN

In this study, we examine the effect of collagenase, elastase and glutaraldehyde treatments on the response of porcine aorta to controlled peel testing. Specifically, the effects on the tissue׳s resistance to dissection, as quantified by critical energy release rate, are investigated. We further explore the utility of these treatments in creating model tissues whose properties emulate those of certain diseased tissues. Such model tissues would find application in, for example, development and physical testing of new endovascular devices. Controlled peel testing of fresh and treated aortic specimens was performed with a tensile testing apparatus. The resulting reaction force profiles and critical energy release rates were compared across sample classes. It was found that collagenase digestion significantly decreases resistance to peeling, elastase digestion has almost no effect, and glutaraldehyde significantly increases resistance. The implications of these findings for understanding mechanisms of disease-associated biomechanical changes, and for the creation of model tissues that emulate these changes are explored.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Colagenasas/farmacología , Glutaral/farmacología , Elastasa Pancreática/farmacología , Animales , Aorta Torácica/fisiología , Fenómenos Biomecánicos , Porcinos
18.
Med Image Anal ; 33: 27-32, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27373145

RESUMEN

Medical image analysis has grown into a matured field challenged by progress made across all medical imaging technologies and more recent breakthroughs in biological imaging. The cross-fertilisation between medical image analysis, biomedical imaging physics and technology, and domain knowledge from medicine and biology has spurred a truly interdisciplinary effort that stretched outside the original boundaries of the disciplines that gave birth to this field and created stimulating and enriching synergies. Consideration on how the field has evolved and the experience of the work carried out over the last 15 years in our centre, has led us to envision a future emphasis of medical imaging in Precision Imaging. Precision Imaging is not a new discipline but rather a distinct emphasis in medical imaging borne at the cross-roads between, and unifying the efforts behind mechanistic and phenomenological model-based imaging. It captures three main directions in the effort to deal with the information deluge in imaging sciences, and thus achieve wisdom from data, information, and knowledge. Precision Imaging is finally characterised by being descriptive, predictive and integrative about the imaged object. This paper provides a brief and personal perspective on how the field has evolved, summarises and formalises our vision of Precision Imaging for Precision Medicine, and highlights some connections with past research and current trends in the field.


Asunto(s)
Diagnóstico por Imagen , Medicina de Precisión , Algoritmos , Animales , Diagnóstico por Imagen/tendencias , Humanos , Medicina de Precisión/tendencias
19.
J Mech Behav Biomed Mater ; 60: 378-393, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26945437

RESUMEN

Large quantities of diseased tissue are required in the research and development of new generations of medical devices, for example for use in physical testing. However, these are difficult to obtain. In contrast, porcine arteries are readily available as they are regarded as waste. Therefore, reliable means of creating from porcine tissue physical models of diseased human tissue that emulate well the associated mechanical changes would be valuable. To this end, we studied the effect on mechanical response of treating porcine thoracic aorta with collagenase, elastase and glutaraldehyde. The alterations in mechanical and failure properties were assessed via uniaxial tension testing. A constitutive model composed of the Gasser-Ogden-Holzapfel model, for elastic response, and a continuum damage model, for the failure, was also employed to provide a further basis for comparison (Calvo and Peña, 2006; Gasser et al., 2006). For the concentrations used here it was found that: collagenase treated samples showed decreased fracture stress in the axial direction only; elastase treated samples showed increased fracture stress in the circumferential direction only; and glutaraldehyde samples showed no change in either direction. With respect to the proposed constitutive model, both collagenase and elastase had a strong effect on the fibre-related terms. The model more closely captured the tissue response in the circumferential direction, due to the smoother and sharper transition from damage initiation to complete failure in this direction. Finally, comparison of the results with those of tensile tests on diseased tissues suggests that these treatments indeed provide a basis for creation of physical models of diseased arteries.


Asunto(s)
Aorta Torácica/patología , Cardiopatías/patología , Animales , Fenómenos Biomecánicos , Colagenasas , Modelos Animales de Enfermedad , Glutaral , Humanos , Elastasa Pancreática , Estrés Mecánico , Porcinos
20.
Magn Reson Med ; 76(2): 645-62, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26417988

RESUMEN

PURPOSE: Magnetic resonance elastography (MRE) of the brain has demonstrated potential as a biomarker of neurodegenerative disease such as dementia but requires further evaluation. Cranial anatomical features such as the falx cerebri and tentorium cerebelli membranes may influence MRE measurements through wave reflection and interference and tissue heterogeneity at their boundaries. We sought to determine the influence of these effects via simulation. METHODS: MRE-associated mechanical stimulation of the brain was simulated using steady state harmonic finite element analysis. Simulations of geometrical models and anthropomorphic brain models derived from anatomical MRI data of healthy individuals were compared. Constitutive parameters were taken from MRE measurements for healthy brain. Viscoelastic moduli were reconstructed from the simulated displacement fields and compared with ground truth. RESULTS: Interference patterns from reflections and heterogeneity resulted in artifacts in the reconstructions of viscoelastic moduli. Artifacts typically occurred in the vicinity of boundaries between different tissues within the cranium, with a magnitude of 10%-20%. CONCLUSION: Given that MRE studies for neurodegenerative disease have reported only marginal variations in brain elasticity between controls and patients (e.g., 7% for Alzheimer's disease), the predicted errors are a potential confound to the development of MRE as a biomarker of dementia and other neurodegenerative diseases. Magn Reson Med 76:645-662, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Artefactos , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Interpretación de Imagen Asistida por Computador/métodos , Modelos Biológicos , Encéfalo/fisiología , Simulación por Computador , Análisis de Elementos Finitos , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA