Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biofabrication ; 14(4)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36070706

RESUMEN

In vitroliver models allow the investigation of the cell behavior in disease conditions or in response to changes in the microenvironment. A major challenge in liver tissue engineering is to mimic the tissue-level complexity: besides the selection of suitable biomaterial(s) replacing the extracellular matrix (ECM) and cell sources, the three-dimensional (3D) microarchitecture defined by the fabrication method is a critical factor to achieve functional constructs. In this study, coaxial extrusion-based 3D bioprinting has been applied to develop a liver sinusoid-like model that consists of a core compartment containing pre-vascular structures and a shell compartment containing hepatocytes. The shell ink was composed of alginate and methylcellulose (algMC), dissolved in human fresh frozen plasma. The algMC blend conferred high printing fidelity and stability to the core-shell constructs and the plasma as biologically active component enhanced viability and supported cluster formation and biomarker expression of HepG2 embedded in the shell. For the core, a natural ECM-like ink based on angiogenesis-supporting collagen-fibrin (CF) matrices was developed; the addition of gelatin (G) enabled 3D printing in combination with the plasma-algMC shell ink. Human endothelial cells, laden in the CFG core ink together with human fibroblasts as supportive cells, formed a pre-vascular network in the core in the absence and presence of HepG2 in the shell. The cellular interactions occurring in the triple culture model enhanced the albumin secretion. In conclusion, core-shell bioprinting was shown to be a valuable tool to study cell-cell-interactions and to develop complex tissue-like models.


Asunto(s)
Bioimpresión , Albúminas , Alginatos/química , Materiales Biocompatibles , Bioimpresión/métodos , Capilares , Colágeno , Células Endoteliales , Fibrina , Gelatina/química , Humanos , Metilcelulosa/química , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
2.
Biofabrication ; 14(1)2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34933296

RESUMEN

One of the key challenges in osteochondral tissue engineering is to define specified zones with varying material properties, cell types and biochemical factors supporting locally adjusted differentiation into the osteogenic and chondrogenic lineage, respectively. Herein, extrusion-based core-shell bioprinting is introduced as a potent tool allowing a spatially defined delivery of cell types and differentiation factors TGF-ß3 and BMP-2 in separated compartments of hydrogel strands, and, therefore, a local supply of matching factors for chondrocytes and osteoblasts. Ink development was based on blends of alginate and methylcellulose, in combination with varying concentrations of the nanoclay Laponite whose high affinity binding capacity for various molecules was exploited. Release kinetics of model molecules was successfully tuned by Laponite addition. Core-shell bioprinting was proven to generate well-oriented compartments within one strand as monitored by optical coherence tomography in a non-invasive manner. Chondrocytes and osteoblasts were applied each in the shell while the respective differentiation factors (TGF-ß3, BMP-2) were provided by a Laponite-supported core serving as central factor depot within the strand, allowing directed differentiation of cells in close contact to the core. Experiments with bi-zonal constructs, comprising an osteogenic and a chondrogenic zone, revealed that the local delivery of the factors from the core reduces effects of these factors on the cells in the other scaffold zone. These observations prove the general suitability of the suggested system for co-differentiation of different cell types within a zonal construct.


Asunto(s)
Bioimpresión , Bioimpresión/métodos , Diferenciación Celular , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Factor de Crecimiento Transformador beta3/farmacología
3.
Sci Rep ; 11(1): 5130, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664366

RESUMEN

With the aim of understanding and recapitulating cellular interactions of hepatocytes in their physiological microenvironment and to generate an artificial 3D in vitro model, a co-culture system using 3D extrusion bioprinting was developed. A bioink based on alginate and methylcellulose (algMC) was first shown to be suitable for bioprinting of hepatocytes; the addition of Matrigel to algMC enhanced proliferation and morphology of them in monophasic scaffolds. Towards a more complex system that allows studying cellular interactions, we applied core-shell bioprinting to establish tailored 3D co-culture models for hepatocytes. The bioinks were specifically functionalized with natural matrix components (based on human plasma, fibrin or Matrigel) and used to co-print fibroblasts and hepatocytes in a spatially defined, coaxial manner. Fibroblasts acted as supportive cells for co-cultured hepatocytes, stimulating the expression of certain biomarkers of hepatocytes like albumin. Furthermore, matrix functionalization positively influenced both cell types in their respective compartments by enhancing their adhesion, viability, proliferation and function. In conclusion, we established a functional co-culture model with independently tunable compartments for different cell types via core-shell bioprinting. This provides the basis for more complex in vitro models allowing co-cultivation of hepatocytes with other liver-specific cell types to closely resemble the liver microenvironment.


Asunto(s)
Bioimpresión , Hepatocitos/ultraestructura , Impresión Tridimensional , Ingeniería de Tejidos , Alginatos/química , Técnicas de Cocultivo , Matriz Extracelular/química , Matriz Extracelular/ultraestructura , Fibroblastos/ultraestructura , Hepatocitos/química , Humanos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA