Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298138

RESUMEN

The treatment of acne and other seborrheic diseases has arisen as a significant clinical challenge due to the increasing appearance of multi-drug resistant pathogens and a high frequency of recurrent lesions. Taking into consideration the fact that some Knautia species are valuable curatives in skin diseases in traditional medicine, we assumed that the thus far unstudied species K. drymeia and K. macedonica may be a source of active substances used in skin diseases. The purpose of this study was to evaluate the antioxidant, anti-inflammatory, antibacterial, and cytotoxic activities of their extracts and fractions. An LC-MS analysis revealed the presence of 47 compounds belonging to flavonoids and phenolic acids in both species while the GC-MS procedure allowed for the identification mainly sugar derivatives, phytosterols, and fatty acids and their esters. The ethanol as well as methanol-acetone-water (3:1:1) extracts of K. drymeia (KDE and KDM) exhibited great ability to scavenge free radicals and good capacity to inhibit cyclooxygenase-1, cyclooxygenase-2, and lipoxygenase. Moreover, they had the most favorable low minimal inhibitory concentration values against acne strains, and importantly, they were non-toxic toward normal skin fibroblasts. In conclusion, K. drymeia extracts seem to be promising and safe agents for further biomedical applications.


Asunto(s)
Dipsacaceae , Enfermedades de la Piel , Humanos , Extractos Vegetales/química , Antibacterianos/farmacología , Medicina Tradicional , Antioxidantes/farmacología , Antioxidantes/química
2.
Plants (Basel) ; 10(5)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063452

RESUMEN

Studies conducted to date have shown that Cephalaria uralensis and C. gigantea have high contents of substances with antibacterial, anti-inflammatory, and antioxidant properties; hence, they are attractive plants from the pharmaceutical point of view. However, despite their multifarious desirable biotechnological aspects, the knowledge of these plants is insufficient. The present study focused on the analysis of the morphological, anatomical, and histological structure of aboveground parts of the plants, the identification of the distribution of biologically active compounds in the tissues, and quantitative phytochemical analyses of polyphenolic compounds contained in their aboveground organs. Importantly, the phenological and morphological features of the aboveground organs in the analyzed species were maintained, as in the same plant species growing in different climatic conditions. The analysis of primary metabolites and phenolic compounds in the tissues revealed their distribution in the aboveground organs, which has never been described before. The comparative analyses of the content of total phenolics, total phenolic acids, and total flavonoids in the aboveground organs showed that the level of these substances differed not only between the species but also between the organs. It should be emphasized that the level of these compounds is higher than in many other medicinal plants.

3.
Arch Microbiol ; 203(5): 2257-2268, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33638666

RESUMEN

Garlic has long been known as the most effective plant species in treatment of bacterial infections. Considering the vast potential of garlic as a source of antimicrobial drugs, this study is aimed to evaluate the antibacterial activity of Allium sativum extracts and their interactions with selected antibiotics against drug-sensitive and multidrug-resistant isolates of emerging bacterial pathogens that are frequently found in healthcare settings. As shown by the in vitro data obtained in this study, the whole Allium sativum extract inhibited the growth of a broad range of bacteria, including multidrug-resistant strains with bactericidal or bacteriostatic effects. Depending on the organism, the susceptibility to fresh garlic extract was comparable to the conventional antibiotic gentamycin. Since the combinations of fresh garlic extract with gentamycin and ciprofloxacin inhibited both the drug sensitive and MDR bacteria, in most cases showing a synergistic or insignificant relationship, the potential use of such combinations may be beneficial, especially in inhibiting drug-resistant pathogens. The study results indicate the possibility of using garlic as e.g. a supplement used during antibiotic therapy, which may increase the effectiveness of gentamicin and ciprofloxacin.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Ajo/metabolismo , Extractos Vegetales/farmacología , Infecciones Bacterianas/microbiología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Ajo/química , Pruebas de Sensibilidad Microbiana
4.
Antioxidants (Basel) ; 9(9)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859126

RESUMEN

The aim of this study was to compare the chemical composition, as well as antioxidant, anti-inflammatory, antiacne, and cytotoxic activites of various extracts of Cephalaria gigantea and C. uralensis. It is worth underlining that we are the first to characterize the composition and evaluate the biological properties of extracts from Cephalaria gigantea and C. uralensis. Thus, the LC-DAD-MS3 analysis revealed the presence of 41 natural products in studied extracts. The 5-O-caffeoylquinic acid, isoorinetin, and swertiajaponin were the main detected compounds. Among the tested samples, ethanol extract of the aerial parts of C. uralensis (CUE) possessed the most suitable biological properties. It exhibited moderate ability to scavenge free radicals and good capacity to inhibit cyclooxygenase-1, as well as cyclooxygenase-2. Moreover, CUE possessed moderate antibacterial activity against all tested bacterial strains (S. aureus, S. epidermidis, and P. acnes), and importantly, it was non-toxic towards normal skin fibroblasts. Taking into account the value of calculated therapeutic index (>10), it is worth noting that CUE can be subjected to in vivo study. Thus, CUE constitutes a very promising antiacne agent.

5.
Plant Physiol Biochem ; 119: 328-337, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28942290

RESUMEN

This study was aimed at discovering an impact of biochemical parameters (like content of cell wall polysaccharides, phenolic compounds, ascorbic acid or activity of pectinolytic enzymes) on cell wall microstructure during physiological fruit development. Cell wall microstructure as well as changes in the polysaccharides distribution were examined by confocal Raman microscopy. Also there was a need to simultaneous usage of reference method which is immunolabeling. A tomato fruit (Solanum lycopersicum cv Cerise) has been selected to observe the changes taking place in the fruit cell wall as it recently has been recognized as a model species for exploring fruit development processes such as fruit formation and ripening. Our studies showed that chemical images allows to depict changes in spatial distribution of polysaccharides in plant cell wall (including the middle lamella area), thus this technique allows to observation of cell wall degradation during tomato ripening (mainly pectic polysaccharides degradation). It seems that high level of pectinolytic enzymes activity and increasing content of ascorbate and hence decrease of pectins content have a significant impact on spatial distribution of biopolymers in fruit cell wall.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Pared Celular/metabolismo , Frutas/crecimiento & desarrollo , Polisacáridos/biosíntesis , Solanum lycopersicum/crecimiento & desarrollo
6.
Planta ; 246(1): 1-18, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28484865

RESUMEN

MAIN CONCLUSION: Chondriokinesis represents a highly orchestrated process of organelle rearrangement in all dividing plant and animal cells, ensuring a proper course of karyokinesis and cytokinesis. This process plays a key role in male gametophyte formation. Chondriokinesis is a regular rearrangement of cell organelles, assuring their regular inheritance, during both mitotic and meiotic divisions in plant and animal cells. The universal occurrence of the process implies its high conservatism and its probable origin at an early stage of plant evolution. The role of chondriokinesis is not only limited to segregation of cell organelles into daughter cells, but also prevention of fusion of karyokinetic spindles and delineation of the cell division plane. Thus, chondriokinesis plays an indispensable role in mitosis and meiosis as one of the various factors in harmonised cell division, being a key process in the formation of viable cells. Therefore, disturbances in this process often result in development of abnormal daughter cells. This has far-reaching consequences for the meiotic division, as emergence of abnormal generative cells impedes sexual reproduction in plants. This review is focused on microsporogenesis, because various plants exhibit a problem with sexual reproduction caused by male sterility. In this paper for the first time in almost 100 years, it is presented a compilation of data on chondriokinesis proceeding during microsporogenesis in plants, and providing view of the role, mechanism, and classification of this process in male gametophyte formation.


Asunto(s)
Citocinesis/fisiología , Gametogénesis en la Planta/fisiología , Meiosis/fisiología , Mitosis/fisiología , Plantas/metabolismo , Citocinesis/genética , Gametogénesis en la Planta/genética , Meiosis/genética , Mitosis/genética , Orgánulos/genética , Orgánulos/metabolismo , Plantas/genética
7.
Planta ; 245(1): 137-150, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27686466

RESUMEN

MAIN CONCLUSION: Using a live-cell-imaging approach and autofluorescence-spectral imaging, we showed quantitative/qualitative fluctuations of chemical compounds within the meiocyte callose wall, providing insight into the molecular basis of male sterility in plants from the genus Allium. Allium sativum (garlic) is one of the plant species exhibiting male sterility, and the molecular background of this phenomenon has never been thoroughly described. This study presents comparative analyses of meiotically dividing cells, which revealed inhibition at the different microsporogenesis stages in male-sterile A. sativum plants (cultivars Harnas and Arkus) and sterile A. ampeloprasum var. ampeloprasum (GHG-L), which is phylogenetically related to garlic. Fertile species A. ampeloprasum (leek) was used as the control material, because leek is closely related to both garlic and GHG-L. To shed more light on the molecular basis of these disturbances, autofluorescence-spectral imaging of live cells was used for the assessment of the biophysical/biochemical differences in the callose wall, pollen grain sporoderm, and the tapetum in the sterile species, in comparison with the fertile leek. The use of techniques for live-cell imaging (autofluorescence-spectral imaging) allowed the observation of quantitative/qualitative fluctuations of autofluorescent chemical compounds within the meiocyte callose wall. The biophysical characterisation of the metabolic disturbances in the callose wall provides insight into the molecular basis of male sterility in A. sativum. In addition, using this method, it was possible for the first time, to determine precisely (on the basis of fluctuations of autofluorescence compounds) the meiosis stage in which normal microsporogenesis is disturbed, which was not visible using light microscopy.


Asunto(s)
Fenómenos Biofísicos , Gametogénesis en la Planta , Ajo/citología , Ajo/fisiología , Infertilidad Vegetal , Profase Meiótica I , Microscopía Confocal , Polen/citología
8.
Plant Reprod ; 28(3-4): 171-82, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26493316

RESUMEN

KEY MESSAGE: Microsporogenesis in garlic. The male-sterile Allium sativum (garlic) reproduces exclusively in the vegetative mode, and anthropogenic factors seem to be the cause of the loss of sexual reproduction capability. There are many different hypotheses concerning the causes of male sterility in A.sativum; however, the mechanisms underlying this phenomenon have not been comprehensively elucidated.Numerous attempts have been undertaken to understand the causes of male sterility, but the tubulin cytoskeleton in meiotically dividing cells during microsporogenesis has never been investigated in this species. Using sterile A.sativum genotype L13 and its fertile close relative A. ampeloprasum (leek), we have analysed the distribution of the tubulin cytoskeleton during microsporogenesis. We observed that during karyokinesis and cytokinesis, in both meiotic divisions I and II, the microtubular cytoskeleton in garlic L13 formed configurations that resembled tubulin arrangement typical of monocots. However, the tubulin cytoskeleton in garlic was distinctly poorer (composed of a few MT filaments) compared with that found in meiotically dividing cells in A. ampeloprasum. These differences did not affect the course of karyogenesis, chondriokinesis, and cytokinesis, which contributed to completion of microsporogenesis, but there was no further development of the male gametophyte. At the very beginning of the successive stage of development of fertile pollen grains, i.e. gametogenesis, there were disorders involving the absence of a normal cortical cytoskeleton and dramatically progressive degeneration of the cytoplasm in garlic. Therefore,we suggest that, due to disturbances in cortical cytoskeleton formation at the very beginning of gametogenesis, the intracellular transport governed by the cytoskeleton might be perturbed, leading to microspore decay in the male-sterile garlic genotype.


Asunto(s)
Allium/fisiología , Ajo/fisiología , Tubulina (Proteína)/fisiología , Allium/ultraestructura , Citoesqueleto/fisiología , Fertilidad , Ajo/ultraestructura , Genotipo , Germinación , Filogenia , Polen/crecimiento & desarrollo
9.
Protoplasma ; 248(2): 289-98, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20544236

RESUMEN

The actin cytoskeleton (microfilaments, MFs) accompanies the tubulin cytoskeleton (microtubules) during the meiotic division of the cell, but knowledge about the scope of their physiological competence and cooperation is insufficient. To cast more light on this issue, we analysed the F-actin distribution during the meiotic division of the Psilotum nudum sporocytes. Unfixed sporangia of P. nudum were stained with rhodamine-phalloidin and 4',6-diamidino-2-phenylindole dihydrochloride, and we monitored the changes in the actin cytoskeleton and nuclear chromatin throughout sporogenesis. We observed that the actin cytoskeleton in meiotically dividing cells is not only part of the kariokinetic spindle and phragmoplast but it also forms a well-developed network in the cytoplasm present in all phases of meiosis. Moreover, in telophase I F-actin filaments formed short-lived phragmoplast, which was adjacent to the plasma membrane, exactly at the site of future cell wall formation. Additionally, the meiocytes were pre-treated with cytochalasin-B at a concentration that causes damage to the MFs. This facilitated observation of the effect of selective MFs damage on the course of meiosis and sporogenesis of P. nudum. Changes were observed that occurred in the cytochalasin-treated cells: the daughter nuclei were located abnormally close to each other, there was no formation of the equatorial plate of organelles and, consequently, meiosis did not occur normally. It seems possible that, if the actin cytoskeleton only is damaged, regular cytokinesis will not occur and, hence, no viable spores will be produced.


Asunto(s)
Actinas/metabolismo , Citoesqueleto/metabolismo , Helechos/crecimiento & desarrollo , Helechos/metabolismo , Transporte Biológico , Cromatina/metabolismo , Citocalasinas/farmacología , Helechos/citología , Meiosis , Microscopía Electrónica , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...