Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
2.
Results Probl Cell Differ ; 71: 407-432, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37996688

RESUMEN

Cell-cell fusion is a normal physiological mechanism that requires a well-orchestrated regulation of intracellular and extracellular factors. Dysregulation of this process could lead to diseases such as osteoporosis, malformation of muscles, difficulties in pregnancy, and cancer. Extensive literature demonstrates that fusion occurs between cancer cells and other cell types to potentially promote cancer progression and metastasis. However, the mechanisms governing this process in cancer initiation, promotion, and progression are less well-studied. Fusogens involved in normal physiological processes such as syncytins and associated factors such as phosphatidylserine and annexins have been observed to be critical in cancer cell fusion as well. Some of the extracellular factors associated with cancer cell fusion include chronic inflammation and inflammatory cytokines, hypoxia, and viral infection. The interaction between these extracellular factors and cell's intrinsic factors potentially modulates actin dynamics to drive the fusion of cancer cells. In this review, we have discussed the different mechanisms that have been identified or postulated to drive cancer cell fusion.


Asunto(s)
Neoplasias , Humanos , Fusión Celular , Neoplasias/patología
3.
Artículo en Inglés | MEDLINE | ID: mdl-38074774

RESUMEN

Acute promyelocytic leukemia (APL)/blood cancer is M3 type of acute myeloid leukemia (AML) formed inside bone marrow through chromosomal translocation mutation usually between chromosome 15 & 17. It accounts around 10% cases of AML worldwide. Trisenox (TX/ATO) is used in chemotherapy for treatment of all age group of APL patients with highest efficacy and survival rate for longer period. High concentration of TX inhibits growth of APL cells by diverse mechanism however, it cures only PML-RARα fusion gene/oncogene containing APL patients. TX resistant APL patients (different oncogenic make up) have been reported from worldwide. This review summarizes updated mechanism of TX action via PML nuclear bodies formation, proteasomal degradation, autophagy, p53 activation, telomerase activity, heteromerization of pRb & E2F, and regulation of signaling mechanism in APL cells. We have also provided important information of combination therapy of TX with other molecules mechanism of action in acute leukemia cells. It provides updated information of TX action for researcher which may help finding new target for further research in APL pathophysiology or new TX resistant APL patients drug designing.

4.
Front Toxicol ; 5: 1272368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090358

RESUMEN

Japanese medaka (Oryzias latipes) is an acceptable small laboratory fish model for the evaluation and assessment of endocrine-disrupting chemicals (EDCs) found in the environment. In this research, we used this fish as a potential tool for the identification of EDCs that have a significant impact on human health. We conducted an electronic search in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and Google Scholar (https://scholar.google.com/) using the search terms, Japanese medaka, Oryzias latipes, and endocrine disruptions, and sorted 205 articles consisting of 128 chemicals that showed potential effects on estrogen-androgen-thyroid-steroidogenesis (EATS) pathways of Japanese medaka. From these chemicals, 14 compounds, namely, 17ß-estradiol (E2), ethinylestradiol (EE2), tamoxifen (TAM), 11-ketotestosterone (11-KT), 17ß-trenbolone (TRB), flutamide (FLU), vinclozolin (VIN), triiodothyronine (T3), perfluorooctanoic acid (PFOA), tetrabromobisphenol A (TBBPA), terephthalic acid (TPA), trifloxystrobin (TRF), ketoconazole (KTC), and prochloraz (PCZ), were selected as references and used for the identification of apical endpoints within the EATS modalities. Among these endpoints, during classification, priorities are given to sex reversal (masculinization of females and feminization of males), gonad histology (testis-ova or ovotestis), secondary sex characteristics (anal fin papillae of males), plasma and liver vitellogenin (VTG) contents in males, swim bladder inflation during larval development, hepatic vitellogenin (vtg) and choriogenin (chg) genes in the liver of males, and several genes, including estrogen-androgen-thyroid receptors in the hypothalamus-pituitary-gonad/thyroid axis (HPG/T). After reviewing 205 articles, we identified 108 (52.68%), 46 (22.43%), 19 (9.26%), 22 (17.18%), and 26 (12.68%) papers that represented studies on estrogen endocrine disruptors (EEDs), androgen endocrine disruptors (AEDs), thyroid endocrine disruptors (TEDs), and/or steroidogenesis modulators (MOS), respectively. Most importantly, among 128 EDCs, 32 (25%), 22 (17.18%), 15 (11.8%), and 14 (10.93%) chemicals were classified as EEDs, AEDs, TEDs, and MOS, respectively. We also identified 43 (33.59%) chemicals as high-priority candidates for tier 2 tests, and 13 chemicals (10.15%) show enough potential to be considered EDCs without any further tier-based studies. Although our literature search was unable to identify the EATS targets of 45 chemicals (35%) studied in 60 (29.26%) of the 205 articles, our approach has sufficient potential to further move the laboratory-based research data on Japanese medaka for applications in regulatory risk assessments in humans.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37946735

RESUMEN

COVID-19, known as Coronavirus Disease 2019, is a major health issue resulting from novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Its emergence has posed a significant menace to the global medical community and healthcare system across the world. Notably, on December 12, 2020, the Food and Drug Administration (FDA) approved the utilization of the Pfizer and Moderna COVID-19 vaccines. As of July 31, 2022, the United Stated has witnessed over 91.3 million cases of COVID-19 and nearly 1.03 million fatalities. An intriguing observation is the recent reduction in the mortality rate of COVID-19, attributed to an augmented focus on early detection, comprehensive screening, and widespread vaccination. Despite this positive trend in some demographics, it is noteworthy that the overall incidence rates of COVID-19 among African American and Hispanic populations have continued to escalate, even as mortality rates have decreased. Therefore, the objective of this research study is to present an overview of COVID-19, spotlighting the disparities among different racial and ethnic groups. It also delves into the management of COVID-19 within the minority populations. To reach our research objective, we used a publicly available COVID-19 dataset from kaggle:https://www.kaggle.com/datasets/paultimothymooney/covid19-cases-and-deaths-by-race. In addition, we obtained COVID-19 datasets from 10 different states with the highest proportion of African American populations. Many considerable strikes have been made in COVID-19. However, success rate of treatment in the African American population remains relatively limited when compared to other ethnic groups. Hence, there arises a pressing need for novel strategies and innovative approaches to not only encourage prevention measures against COVID-19, but also to increase survival rates, diminish mortality rates, and ultimately improve the health outcomes of ethnic and racial minorities.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37754587

RESUMEN

Since its establishment in 2004, the International Journal of Environmental Research and Public Health (IJERPH) [...].


Asunto(s)
Salud Ambiental , Salud Pública
7.
Data Brief ; 48: 109213, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37383828

RESUMEN

The datasets of this article present the experimental parameters resulting from the assessment of δ-cells in the islet organs of the endocrine pancreas as a potential biomarker of endocrine disruption (ED) mediated by graphene oxide (GO), using Japanese medaka fish as the model. These datasets support the article "Evaluation of pancreatic δ-cells as a potential target site of graphene oxide toxicity in Japanese medaka (Oryzias latipes) fish". GO used in the experiments was either obtained from a commercial source or synthesized in the laboratory by us. GO was sonicated for 5 min in ice temperature before application. The experiments were conducted on reproductively active adult fish maintained as a breeding pair (one male and one female) in 500 ml balanced salt solution (BSS) either by immersion (IMR) in GO (20 mg/L) continuously for 96 h with the refreshing of media once in every 24 h, or by a single intraperitoneal (IP) administration of GO (100 µg/g) to both male and female partners. Control fish were maintained in BSS only (IMR experiment), or nanopure water (vehicle) was injected into the peritoneal cavity (IP experiment). The IP experimental fish were anesthetized in MS-222 (100 mg/L in BSS); the injected volume (0.5 µL/10 mg fish) never exceeds 50 µl/fish. After injection, the injected fish were allowed for recovery in clean BSS and after recovery both partners were transferred to 1 L glass jars with 500 mL BSS. During depuration, the media of the breeders refreshed once every 24 h and the eggs were collected. After 21 days, the survived fish were anaesthetized, and the trunk region was preserved in 4% paraformaldehyde in PBS (20 mM) containing 0.05% Tween 20. The phenotypic sex of adult fish was assessed externally by secondary sex characters (fin features) and internally by gonad (testis and ovary) histology. Once the location of pancreas was determined after HE stains, immunohistochemical technique was applied on next few slides using rabbit derived polyclonal antisomatostatin antibody as primary antibody and a commercial kit for colorimetric determination of δ-cells in the islet organs was used. Images were captured using an Olympus CKX53 inverted microscope with DP22 camera and CellSens software. Using imagej software, a minimum 3 images of principal islets and one image of secondary islets were assessed. The immunoreactivity of δ-cells, due to neuron-like appearance and filopodia like processes, enabled us to separate them from other cell types found in the pancreatic islets of medaka. Based on immunoreactivity, we have classified islet cells into three categories; noncommunicating delta cells (NCDC), communicating cells (CC), and non-delta cells (NDC), and expressed as number of cells (NCDC/CC/NDC)/mm2 of islet organs. The nuclear area (µm2) and the linear length of filopodia of NCDCs were also considered for evaluation. Numerical data were analysed by Kruskal-Wallis test followed by Mann-Whitney's test as post hoc test and presented as means  ±  SEM. Statistically significant differences were considered for p ≤ 0.05.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37297626

RESUMEN

Social distancing measures and shelter-in-place orders to limit mobility and transportation were among the strategic measures taken to control the rapid spreading of COVID-19. In major metropolitan areas, there was an estimated decrease of 50 to 90 percent in transit use. The secondary effect of the COVID-19 lockdown was expected to improve air quality, leading to a decrease in respiratory diseases. The present study examines the impact of mobility on air quality during the COVID-19 lockdown in the state of Mississippi (MS), USA. The study region is selected because of its non-metropolitan and non-industrial settings. Concentrations of air pollutants-particulate matter 2.5 (PM2.5), particulate matter 10 (PM10), ozone (O3), nitrogen oxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO)-were collected from the Environmental Protection Agency, USA from 2011 to 2020. Because of limitations in the data availability, the air quality data of Jackson, MS were assumed to be representative of the entire region of the state. Weather data (temperature, humidity, pressure, precipitation, wind speed, and wind direction) were collected from the National Oceanic and Atmospheric Administration, USA. Traffic-related data (transit) were taken from Google for the year 2020. The statistical and machine learning tools of R Studio were used on the data to study the changes in air quality, if any, during the lockdown period. Weather-normalized machine learning modeling simulating business-as-scenario (BAU) predicted a significant difference in the means of the observed and predicted values for NO2, O3, and CO (p < 0.05). Due to the lockdown, the mean concentrations decreased for NO2 and CO by -4.1 ppb and -0.088 ppm, respectively, while it increased for O3 by 0.002 ppm. The observed and predicted air quality results agree with the observed decrease in transit by -50.5% as a percentage change of the baseline, and the observed decrease in the prevalence rate of asthma in MS during the lockdown. This study demonstrates the validity and use of simple, easy, and versatile analytical tools to assist policymakers with estimating changes in air quality in situations of a pandemic or natural hazards, and to take measures for mitigating if the deterioration of air quality is detected.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , COVID-19/epidemiología , Dióxido de Nitrógeno/análisis , Mississippi/epidemiología , Control de Enfermedades Transmisibles , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Óxido Nítrico , Monitoreo del Ambiente/métodos
9.
Int J Mol Sci ; 24(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240430

RESUMEN

Diabetes mellitus (DM) is a serious chronic metabolic disease that is associated with hyperglycemia and several complications including cardiovascular disease and chronic kidney disease. DM is caused by high levels of blood sugar in the body associated with the disruption of insulin metabolism and homeostasis. Over time, DM can induce life-threatening health problems such as blindness, heart disease, kidney damage, and stroke. Although the cure of DM has improved over the past decades, its morbidity and mortality rates remain high. Hence, new therapeutic strategies are needed to overcome the burden of this disease. One such prevention and treatment strategy that is easily accessible to diabetic patients at low cost is the use of medicinal plants, vitamins, and essential elements. The research objective of this review article is to study DM and explore its treatment modalities based on medicinal plants and vitamins. To achieve our objective, we searched scientific databases of ongoing trials in PubMed Central, Medline databases, and Google Scholar websites. We also searched databases on World Health Organization International Clinical Trials Registry Platform to collect relevant papers. Results of numerous scientific investigations revealed that phytochemicals present in medicinal plants (Allium sativum, Momordica charantia, Hibiscus sabdariffa L., and Zingiber officinale) possess anti-hypoglycemic activities and show promise for the prevention and/or control of DM. Results also revealed that intake of vitamins C, D, E, or their combination improves the health of diabetes patients by reducing blood glucose, inflammation, lipid peroxidation, and blood pressure levels. However, very limited studies have addressed the health benefits of medicinal plants and vitamins as chemo-therapeutic/preventive agents for the management of DM. This review paper aims at addressing this knowledge gap by studying DM and highlighting the biomedical significance of the most potent medicinal plants and vitamins with hypoglycemic properties that show a great potential to prevent and/or treat DM.


Asunto(s)
Diabetes Mellitus , Plantas Medicinales , Humanos , Plantas Medicinales/química , Vitaminas/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Glucemia/metabolismo , Vitamina A/uso terapéutico , Vitamina K
10.
Ecotoxicol Environ Saf ; 253: 114649, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36806823

RESUMEN

In continuation to our previous investigations on graphene oxide (GO) as an endocrine disrupting chemical (EDC), in the present experiment, we have investigated endocrine pancreas of Japanese medaka adults focusing on δ-cells in the islet organs as an endpoint. Breeding pairs of adult male and female fish were exposed to 0 mg/L (control) or 20 mg/L GO by continuous immersion (IMR) for 96 h, or to 0 µg/g or 100 µg/g GO by a single intraperitoneal (IP) administration and depurated 21 days in a GO-free environment. Histological investigations indicated that the endocrine cells are concentrated in one large principal islet, and several small secondary islets scattered within the mesentery near the liver and intestine. The cells of the islet organ are in various shapes with basophilic nuclei and eosinophilic cytoplasm. Immunohistochemical evaluation using rabbit polyclonal antisomatostatin antibody indicated that immunoreactivity is localized either at the periphery or at the central region in principal islets, and throughout the secondary islets, and found to be enhanced in fish exposed to GO than controls. The soma of δ-cells exhibits neuron-like morphology and have filopodia like processes. Cell sorting as non-communicating δ-cells (NCDC), communicating cells (CC), and non- δ-cells (NDC) indicated that within an islet organ, the population of NDCC is found to be the least and NDC is the highest. Our data further indicated that GO-induced impairments in the islet organs of medaka pancreas are inconsistent and could be affected by the exposure roots as well as the sex of the fish.


Asunto(s)
Grafito , Oryzias , Contaminantes Químicos del Agua , Femenino , Masculino , Animales , Conejos , Fitomejoramiento , Grafito/toxicidad , Hígado/patología , Contaminantes Químicos del Agua/toxicidad
11.
Anal Chim Acta ; 1239: 340636, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36628742

RESUMEN

DNA methylation is intensively studied in medical science. Current HPLC methods for quantification of global DNA methylation involve digestion of a DNA sample and HPLC determination of both cytosine (C) and 5-methylcytosine (5mC) so that percentage of 5mC in total cytosine can be calculated as DNA methylation level. Herein we report a novel HPLC method based on a one-pot fluorescence tagging and depyrimidination reaction between DNA and chloroacetaldehyde (CAA) for highly sensitive quantification of global DNA methylation. In the one-pot reaction, C and 5mC residues in a DNA sequence react with CAA, forming fluorescent etheno-adducts that are then released from the sequence through depyrimidination. Interestingly, etheno-5mC (ε-5mC) is ∼20 times more fluorescent than ε-C and other ε-nucleobases resulting from the reaction, which greatly facilitates the quantification. Further, due to the tagging-induced increase in structural aromaticity, ε-nucleobases are far more separable by HPLC than intact nucleobases. The proposed HPLC method with fluorescence detection (HPLC-FD) is quick (i.e., < 1h per assay) and highly sensitive with a detection limit of 0.80 nM (or 250 fg on column) for 5mC. Using the method, DNA samples isolated from yeast, HCT-116 cells, and tissues were analyzed. Global DNA methylation was measured to be in the range from 0.35% to 2.23% in the samples analyzed. This sensitive method allowed accurate analyses of minute DNA samples (∼100 ng) isolated from milligrams of tissues.


Asunto(s)
5-Metilcitosina , Metilación de ADN , 5-Metilcitosina/análisis , Citosina , Cromatografía Líquida de Alta Presión/métodos , ADN/análisis
12.
Artículo en Inglés | MEDLINE | ID: mdl-36674346

RESUMEN

Trust is critical to the development and maintenance of effective research collaborations and community engagement. The purpose of this study was to assess the current attitudes and level of trust pertaining to health research among residents of Central Mississippi, the priority health region for the Research Centers in Minority Institutions (RCMI) Center for Health Disparities Research (RCHDR) at Jackson State University. The cross-sectional study was conducted from November 2021 to April 2022. The data were analyzed using descriptive statistics carried out by SPSS statistical software. A total of 146 participants responded to the survey. The participants were predominately African American (99%) and female (75%). Historical research studies, the researchers' qualities, and potential benefits from participation were factors affecting the level of trust in the research process. Ninety percent (n = 131) expressed that it was important to be involved in the research process, and 98.5% (n = 144) agreed that discussing the research findings with the participants was important for establishing trust in the research process. While trust in the research process does not guarantee participation, trust is a precursor for those who decide to engage in health disparities research. Key findings will be integrated into the RCHDR research agenda to foster further development and implementation of innovative community-based participatory research toward the control and/or prevention of diseases that disproportionately affect minority and under-represented populations in Mississippi.


Asunto(s)
Investigación Biomédica , Confianza , Humanos , Femenino , Mississippi , Estudios Transversales , Grupos Minoritarios
13.
FASEB Bioadv ; 4(12): 816-829, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36479210

RESUMEN

Although colorectal cancer (CRC) treatment has seen a remarkable improvement in the recent years, many patients will develop metastasis due to the resistance of cancer cells to chemotherapeutics. Targeting mechanisms driving the resistance of CRC cells to treatment would significantly reduce cases of metastasis and death. Induction of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), a direct target of the Wnt/ß-catenin signaling pathway, might promote resistance of CRC cells to treatment via activation of anti-apoptotic pathways and induction of the multidrug resistance (MDR1) membrane transporter that pumps drugs out of the cells. We hypothesized that inhibition of IGF2BP1 will sensitize CRC cells to chemotherapeutics. We used CRC cell lines with different status of activation of Wnt signaling to show that inhibition of IGF2BP1 potentiates the anti-growth and anti-proliferative effects of chemotherapeutics on CRC cells with activated Wnt/ß-catenin signaling pathway. We observed that the inhibition of IGF2BP1 significantly increases apoptosis in the same cells. A remarkable reduction in the migratory capability of those cells was noted as well. We found that inhibition of IGF2BP1 is sufficient to decrease the resistance of chemotherapy-resistant cancer cells with activated Wnt/ß-catenin signaling pathway. These findings portray IGF2BP1 as a good candidate for CRC therapy.

14.
J Biomed Res Environ Sci ; 3(9): 1118-1124, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36578651

RESUMEN

Background: Prostate cancer (PCa) is one of the common cancers in males and its incidence keeps increasing globally. Approximately 81% of PCa is diagnosed during the early stage of the disease. The treatment options for prostate care include surgery, radiotherapy, and chemotherapy, but these treatments often have side effects that may lead to issues such as impotence or decreased bowel function. Our central goal is to test the apoptotic effects of Vernonia amygdalina Delile (an edible medicinal plant that is relatively inexpensive, nontoxic, and virtually without side effects) for the prevention of PCa using human adenocarcinoma (PC-3) cells as a test model. Methods: To address our central goal, PC-3 cells were treated with Vernonia amygdalina Delile (VAD). Cell cycle arrest and cell apoptosis were evaluated by Flow Cytometry assessment. Nucleosomal DNA fragmentation was detected by agarose gel electrophoresis. Results: Flow cytometry data showed that VAD induced cell cycle arrest at the G0/G1 checkpoint and significantly upregulated caspase-3 in treated cells compared to the control cells. Agarose gel electrophoresis resulted in the formation of DNA ladders in VAD-treated cells. Conclusions: These results suggest that inhibition of cancer cell growth, induction of cell cycle arrest, and apoptosis through caspase-3 activation and nucleosomal DNA fragmentation are involved in the therapeutic mechanisms of VAD as a candidate drug towards the prevention and/or treatment of PCa.

15.
Artículo en Inglés | MEDLINE | ID: mdl-36554432

RESUMEN

The COVID-19 pandemic has created a severe upheaval in the U.S., with a particular burden on the state of Mississippi, which already has an exhausted healthcare burden. The main objectives of this study are: (1) to analyze the county-level COVID-19 cases, deaths, and vaccine distribution and (2) to determine the correlation between various social determinants of health (SDOH) and COVID-19 vaccination coverage. We analyzed COVID-19-associated data and county-level SDOH factors in 82 counties of Mississippi. The cumulative COVID-19 and socio-demographic data variables were grouped into feature and target variables. The statistical and exploratory data analysis (EDA) was conducted using Python 3.8.5. The correlation between the target and feature variables was performed by Pearson Correlation analysis. The heat Map Correlation Matrix was visually presented to illustrate the correlation between each pair of features and each target variable. Results indicated that people of Asian descent had the highest vaccination coverage of 77% fully vaccinated compared to 52%, 46%, 42% and 25% for African Americans, Whites, Hispanics, and American Indians/Alaska Natives, respectively. The county-level vaccination rate was significantly higher among the minority populations than the White population. It was observed that COVID-19 cases and deaths were positively correlated with per capita income and negatively correlated with the percentage of persons without a high school diploma (age 25+). This study strongly demonstrates that different SDOH factors influence the outcome of the COVID-19 vaccination rate, which also affects the total number of COVID-19 cases and deaths. Vaccine promotion should be given to all populations regardless of race and ethnicity to achieve uniform acceptance. Therefore, statewide policy recommendations focusing on specific community needs should help achieve health equity in COVID-19 vaccination management.


Asunto(s)
COVID-19 , Vacunas , Humanos , Estados Unidos/epidemiología , Adulto , COVID-19/epidemiología , COVID-19/prevención & control , Mississippi/epidemiología , Pandemias/prevención & control , Vacunas contra la COVID-19 , Vacunación
16.
Artículo en Inglés | MEDLINE | ID: mdl-36554864

RESUMEN

Funded by the National Institutes of Health (NIH), the Research Centers in Minority Institutions (RCMI) Program fosters the development and implementation of innovative research aimed at improving minority health and reducing or eliminating health disparities. Currently, there are 21 RCMI Specialized (U54) Centers that share the same framework, comprising four required core components, namely the Administrative, Research Infrastructure, Investigator Development, and Community Engagement Cores. The Research Infrastructure Core (RIC) is fundamentally important for biomedical and health disparities research as a critical function domain. This paper aims to assess the research resources and services provided and evaluate the best practices in research resources management and networking across the RCMI Consortium. We conducted a REDCap-based survey and collected responses from 57 RIC Directors and Co-Directors from 98 core leaders. Our findings indicated that the RIC facilities across the 21 RCMI Centers provide access to major research equipment and are managed by experienced faculty and staff who provide expert consultative and technical services. However, several impediments to RIC facilities operation and management have been identified, and these are currently being addressed through implementation of cost-effective strategies and best practices of laboratory management and operation.


Asunto(s)
Investigación Biomédica , Estados Unidos , Humanos , Grupos Minoritarios , National Institutes of Health (U.S.) , Salud de las Minorías , Investigadores
17.
Data Brief ; 45: 108693, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36426008

RESUMEN

The datasets of this article present the experimental parameters resulting from the assessment of adrenal gland as a potential biomarker of endocrine disruption mediated by graphene oxide (GO), a nanocarbon, using Japanese medaka fish as the model. These data sets support the article "Histopathological evaluation of the interrenal gland (adrenal homolog) of Japanese medaka (Oryzias latipes) exposed to graphene oxide". The experiments were conducted on reproductively active adult fish maintained as a breeding pair (one male and one female) in 500 mL balanced salt solution (BSS) either by immersion in GO (20 mg/L in BSS) continuously for 96 h with refreshing of media once in every 24 h or by a single intraperitoneal (IP) injection of GO (100 µg/g) to both male and female fish. The experimental fish were allowed breeding and assessed after 21 days post-treatment. Moreover, one day-post hatch (dph) Japanese medaka fries (orange-red variety) were exposed to different concentrations of GO (2.5-20 mg/L) by immersion in embryo-rearing medium (ERM) for 96 h (1-5 dph) with refreshing of media every 24h. Food was given to the adults, however, the larvae remained fasting during the GO-exposure (0-5 dph) period. Control adults and larvae were identically maintained either in BSS (adults) or ERM (larvae), with no GO. After treatment, both adults and the larvae were maintained in BSS with feeding in a GO-free environment. After 21 days post-treatment, adults, and after six weeks post-treatment, larvae, were anaesthetized in MS-222, and the trunk region was preserved in 4% paraformaldehyde in PBS (20 mM) containing 0.05% Tween 20. Evaluation of interrenal gland (IRG) in kidneys were made in 5 µm thick sections stained on haematoxylin-eosin (HE). The phenotypic sex of adults was assessed by secondary sex characters (fin features) and gonad (testis and ovary) histology; in larvae, phenotypic sex was determined by gonad histology and the genotypic sex by genotyping dmy gene. The location of IRG in the kidney were determined by immunohistochemical technique using rabbit polyclonal antityrosine hydroxylase antibody as primary antibody. The digital images of sections were captured using an Olympus CKX53 inverted microscope with DP22 camera and CellSens software. Using imagej software, a minimum of 3 images of kidney consisting IRG were assessed for cell (separated as dark and pale stained nucleus after HE staining) sorting (cells/ mm2) and also measured the nuclear area (µm2). Counting of IRG cells, lined between the cardinal vein and the interstitial cells in the kidneys, were limited to maximum three layers in a given area. Numerical data, presented as means ± SEM, were analysed by one-way ANOVA followed by post-hoc Tukey's multiple comparison test or unpaired parametric 't' test including Welch's correction, if distributed normally; or by Kruskal-Wallis test followed by Mann-Whitney's test as post hoc test, if the data did not meet the criteria of using a parametric test. Statistically significant difference were considered for p ≤ 0.05. The collected data on IRG of Japanese medaka fish will be used for the assessment of GO as an EDC disposed in the environment.

18.
ACS Earth Space Chem ; 6(5): 1321-1330, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-36275877

RESUMEN

Armor-penetrating projectiles and fragments of depleted uranium (DU) have been deposited in soils at weapon-tested sites. Soil samples from these military facilities were analyzed by inductively coupled plasma-optical emission spectroscopy and X-ray diffraction to determine U concentrations and transport across an arid ecosystem. Under arid conditions, both vertical transport driven by evaporation (upward) and leaching (downward) and horizontal transport of U driven by surface runoff in the summer were observed. Upward vertical transport was simulated and confirmed under laboratory-controlled conditions, to be leading to the surface due to capillary action via evaporation during alternating wetting and drying conditions. In the field, the 92.8% of U from DU penetrators and fragments remained in the top 5 cm of soil and decreased to background concentrations in less than 20 cm. In locations prone to high amounts of water runoff, U concentrations were reduced significantly after 20 m from the source due to high surface runoff. Uranium was also transported throughout the ecosystem via plant uptake and wild animal consumption between trophic levels, but with limited accumulation in edible portions in plants and animals.

19.
Int J Biomed Clin Anal ; 2(1): 9-19, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36267598

RESUMEN

Coronavirus (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus, which has plagued the Earth for the past two years and brought much controversy along with it. This report aims to analyze how the Covid-19 pandemic has had indirect effects on the environment. The onset of the pandemic has not only caused havoc disrupting routine average and businesses, but also claimed at least five million lives worldwide. This prompted the governments and the World Health Organization (WHO) to formulate measures to contain the transmission and the impact of the disease on the populations. Quarantine measures, movement restrictions, lockdowns and curfews, and travel bans are some of the most effective response methods that have helped the world contain the pandemic's spread. The adopted measures have had an indirect impact on the environment, opening the global community to numerous opportunities and threats. This report provides a critical analysis of how the Covid-19 pandemic has had indirect effects on the environment, examining how the response and containment measures have affected the environment. It focuses on air quality, water demand and quality, climate change, afforestation and deforestation, wildlife resurgence, littering, traffic congestion, noise reduction and changed human activities. It explores how the Covid-19 containment measures have had an environmental impact with a keen interest in the earlier areas.

20.
J Biomed Res Environ Sci ; 3(8): 980-984, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36186234

RESUMEN

Breast cancer (BC) is the most common malignancy in women worldwide. In the United States, the lifetime risk of developing an invasive form of breast cancer is 12.5% among women. BC arises in the lining cells (epithelium) of the ducts or lobules in the glandular tissue of the breast. The goal of the present study was to use machine learning (ML) as a novel technology to assess and compare the invasive forms of BC including, infiltrating ductal carcinoma, infiltrating lobular carcinoma, and mucinous carcinoma. To achieve this goal, we used ML algorithms and collected a dataset of 334 BC patients available at https://www.kaggle.com/amandam1/breastcancerdataset and interpreted this dataset based on the form of BC, age, sex, tumor stages, surgery type, and survival rate. Among the 334 patients, 70% were diagnosed with infiltrating ductal carcinoma, 27% with infiltrating lobular carcinoma, and 3% with mucinous carcinoma. Overall, out of 334 BC patients: 64 (19.16%) were in stage I, 189 (56.59%) in stage II, and 81 (24.25%) in stage III. Sixty-six, 67, 96, and 105 patients underwent lumpectomy, simple mastectomy, modified radical mastectomy, and other types of surgery, respectively. The survival rates were 83.4% for stage I, 79.1% for stage II, and 77% for stage III. Findings from the present study demonstrated that ML provides an important tool to curate large amount of BC data, as well as a scientific means to improve BC outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...