RESUMEN
Severe Middle East respiratory syndrome (MERS) is characterized by massive infiltration of immune cells in lungs. MERS-coronavirus (MERS-CoV) replicates in vitro in human macrophages, inducing high pro-inflammatory responses. In contrast, camelids, the main reservoir for MERS-CoV, are asymptomatic carriers. Although limited infiltration of leukocytes has been observed in the lower respiratory tract of camelids, their role during infection remains unknown. Here we studied whether llama alveolar macrophages (LAMs) are susceptible to MERS-CoV infection and can elicit pro-inflammatory responses. MERS-CoV did not replicate in LAMs; however, they effectively capture and degrade viral particles. Moreover, transcriptomic analyses showed that LAMs do not induce pro-inflammatory cytokines upon MERS-CoV sensing.
Asunto(s)
Camélidos del Nuevo Mundo , Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Humanos , Citocinas/metabolismo , Macrófagos Alveolares , Camélidos del Nuevo Mundo/metabolismo , Replicación ViralRESUMEN
Camelids are economically and socially important in several parts of the world and might carry pathogens with epizootic or zoonotic potential. However, biological research in these species is limited due to lack of reagents. Here, we developed RT-qPCR assays to quantify a panel of camelid innate and adaptive immune response genes, which can be monitored in a single run. The assays were validated with PHA, PMA-ionomycin, and Poly I:C-stimulated PBMCs from alpaca, dromedary camel and llama, including normalization by multiple reference genes. Further, comparative gene expression analyses for the different camelid species were performed by a unique microfluidic qPCR assay. Compared to unstimulated controls, PHA and PMA-ionomycin stimulation elicited robust Th1 and Th2 responses in PBMCs from camelid species. Additional activation of type I and type III IFN signalling pathways was described exclusively in PHA-stimulated dromedary lymphocytes, in contrast to those from alpaca and llama. We also found that PolyI:C stimulation induced robust antiviral response genes in alpaca PBMCs. The proposed methodology should be useful for the measurement of immune responses to infection or vaccination in camelid species.
Asunto(s)
Camélidos del Nuevo Mundo , Citocinas , Animales , Citocinas/genética , Camelus , Ionomicina , Microfluídica , ARN MensajeroRESUMEN
Middle East respiratory syndrome coronavirus (MERS-CoV) infection can cause fatal pulmonary inflammatory disease in humans. Contrarily, camelids and bats are the main reservoir hosts, tolerant for MERS-CoV replication without suffering clinical disease. Here, we isolated cervical lymph node (LN) cells from MERS-CoV convalescent llamas and pulsed them with two different viral strains (clades B and C). Viral replication was not supported in LN, but a cellular immune response was mounted. Reminiscent Th1 responses (IFN-γ, IL-2, IL-12) were elicited upon MERS-CoV sensing, accompanied by a marked and transient peak of antiviral responses (type I IFNs, IFN-λ3, ISGs, PRRs and TFs). Importantly, expression of inflammatory cytokines (TNF-α, IL-1ß, IL-6, IL-8) or inflammasome components (NLRP3, CASP1, PYCARD) was dampened. The role of IFN-λ3 to counterbalance inflammatory processes and bridge innate and adaptive immune responses in camelid species is discussed. Our findings shed light into key mechanisms on how reservoir species control MERS-CoV in the absence of clinical disease.
Asunto(s)
Camélidos del Nuevo Mundo , Quirópteros , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Animales , Antivirales , Camelidae , Inflamación , Inmunidad CelularRESUMEN
Middle East respiratory syndrome coronavirus (MERS-CoV) clade B viruses are found in camelids and humans in the Middle East, but clade C viruses are not. We provide experimental evidence for extended shedding of MERS-CoV clade B viruses in llamas, which might explain why they outcompete clade C strains in the Arabian Peninsula.
Asunto(s)
Camélidos del Nuevo Mundo , Infecciones por Coronavirus , Herpesvirus Cercopitecino 1 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Humanos , Esparcimiento de Virus , CamelusRESUMEN
Middle East respiratory syndrome coronavirus (MERS-CoV) poses a serious threat to public health. Here, we established an ex vivo alpaca tracheal explant (ATE) model using an air-liquid interface culture system to gain insights into MERS-CoV infection in the camelid lower respiratory tract. ATE can be infected by MERS-CoV, being 103 TCID50/mL the minimum viral dosage required to establish a productive infection. IFNs and antiviral ISGs were not induced in ATE cultures in response to MERS-CoV infection, strongly suggesting that ISGs expression observed in vivo is rather a consequence of the IFN induction occurring in the nasal mucosa of camelids.
Asunto(s)
Camélidos del Nuevo Mundo , Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Antivirales , Bronquios , Infecciones por Coronavirus/veterinaria , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiologíaRESUMEN
Middle East respiratory syndrome coronavirus (MERS-CoV) is the cause of a severe respiratory disease with a high case fatality rate in humans. Since its emergence in mid-2012, 2578 laboratory-confirmed cases in 27 countries have been reported by the World Health Organization, leading to 888 known deaths due to the disease and related complications. Dromedary camels are considered the major reservoir host for this virus leading to zoonotic infection in humans. Dromedary camels, llamas, and alpacas are susceptible to MERS-CoV, developing a mild-to-moderate upper respiratory tract infection characterized by epithelial hyperplasia as well as infiltration of neutrophils, lymphocytes, and some macrophages within epithelium, lamina propria, in association with abundant viral antigen. The very mild lesions in the lower respiratory tract of these camelids correlate with absence of overt illness following MERS-CoV infection. Unfortunately, there is no approved antiviral treatment or vaccine for MERS-CoV infection in humans. Thus, there is an urgent need to develop intervention strategies in camelids, such as vaccination, to minimize virus spillover to humans. Therefore, the development of camelid models of MERS-CoV infection is key not only to assess vaccine prototypes but also to understand the biologic mechanisms by which the infection can be naturally controlled in these reservoir species. This review summarizes information on virus-induced pathological changes, pathogenesis, viral epidemiology, and control strategies in camelids, as the intermediate hosts and primary source of MERS-CoV infection in humans.
Asunto(s)
Camélidos del Nuevo Mundo , Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Camelus , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , ZoonosisRESUMEN
ABSTRACTMiddle East respiratory syndrome coronavirus (MERS-CoV) continues infecting humans and dromedary camels. While MERS-CoV strains from the Middle East region are subdivided into two clades (A and B), all the contemporary epidemic viruses belong to clade B. Thus, MERS-CoV clade B strains may display adaptive advantages over clade A in humans and/or reservoir hosts. To test this hypothesis in vivo, we compared an early epidemic clade A strain (EMC/2012) with a clade B strain (Jordan-1/2015) in an alpaca model monitoring virological and immunological parameters. Further, the Jordan-1/2015 strain has a partial amino acid (aa) deletion in the double-stranded (ds) RNA binding motif of the open reading frame ORF4a protein. Animals inoculated with the Jordan-1/2015 variant had higher MERS-CoV replicative capabilities in the respiratory tract and larger nasal viral shedding. In the nasal mucosa, the Jordan-1/2015 strain caused an early IFN response, suggesting a role for ORF4a as a moderate IFN antagonist in vivo. However, both strains elicited maximal transcription of antiviral interferon-stimulated genes (ISGs) at the peak of infection on 2 days post inoculation, correlating with subsequent decreases in tissular viral loads. Genome alignment analysis revealed several clade B-specific amino acid substitutions occurring in the replicase and the S proteins, which could explain a better adaptation of clade B strains in camelid hosts. Differences in replication and shedding reported herein indicate a better fitness and transmission capability of MERS-CoV clade B strains than their clade A counterparts.
Asunto(s)
Adaptación Fisiológica/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Coronavirus del Síndrome Respiratorio de Oriente Medio/clasificación , Sustitución de Aminoácidos/genética , Animales , Camélidos del Nuevo Mundo , Camelus , Línea Celular , Chlorocebus aethiops , Citocinas/sangre , Genoma Viral/genética , Inmunidad Innata/inmunología , Jordania/epidemiología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Sistemas de Lectura Abierta/genética , Qatar/epidemiología , ARN Viral/genética , Mucosa Respiratoria/virología , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero , Carga ViralRESUMEN
While MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, while interferon stimulated genes (ISGs) were induced along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, seems central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10.
Asunto(s)
Camélidos del Nuevo Mundo , Infecciones por Coronavirus/inmunología , Interferón Tipo I/metabolismo , Interferones/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Animales , Antivirales/metabolismo , Antivirales/farmacología , Camélidos del Nuevo Mundo/inmunología , Camélidos del Nuevo Mundo/metabolismo , Camélidos del Nuevo Mundo/virología , Chlorocebus aethiops , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Reservorios de Enfermedades/veterinaria , Resistencia a la Enfermedad/efectos de los fármacos , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica , Inmunidad Innata/fisiología , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/veterinaria , Inflamación/virología , Interferón Tipo I/genética , Interferón Tipo I/farmacología , Interferones/genética , Interferones/farmacología , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/inmunología , Mucosa Nasal/metabolismo , Mucosa Nasal/virología , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/inmunología , Sistema Respiratorio/metabolismo , Sistema Respiratorio/virología , Células Vero , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Interferón lambdaRESUMEN
Reinfections with SARS-CoV-2 have already been documented in humans, although its real incidence is currently unknown. Besides having a great impact on public health, this phenomenon raises the question of immunity generated by a single infection is sufficient to provide sterilizing/protective immunity to a subsequent SARS-CoV-2 re-exposure. The Golden Syrian hamster is a manageable animal model to explore immunological mechanisms able to counteract COVID-19, as it recapitulates pathological aspects of mild to moderately affected patients. Here, we report that SARS-CoV-2-inoculated hamsters resolve infection in the upper and lower respiratory tracts within seven days upon inoculation with the Cat01 (G614) SARS-CoV-2 isolate. Three weeks after the primary challenge, and despite high titres of neutralizing antibodies, half of the animals were susceptible to reinfection by both identical (Cat01, G614) and variant (WA/1, D614) SARS-CoV-2 isolates. However, upon re-inoculation, only nasal tissues were transiently infected with much lower viral replication than those observed after the first inoculation. These data indicate that a primary SARS-CoV-2 infection is not sufficient to elicit a sterilizing immunity in hamster models but protects against lung disease.
Asunto(s)
COVID-19/inmunología , COVID-19/virología , Interacciones Huésped-Patógeno/inmunología , Reinfección/virología , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/diagnóstico , COVID-19/patología , Línea Celular , Cricetinae , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunidad Humoral , Inmunohistoquímica , Masculino , Pruebas de Neutralización , SARS-CoV-2/genética , Carga Viral , Replicación ViralRESUMEN
Conventional piglets were inoculated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through different routes, including intranasal, intratracheal, intramuscular and intravenous ones. Although piglets were not susceptible to SARS-CoV-2 and lacked lesions or viral RNA in tissues/swabs, seroconversion was observed in pigs inoculated parenterally (intramuscularly or intravenously).
Asunto(s)
COVID-19 , Enfermedades de los Porcinos , Animales , COVID-19/veterinaria , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/veterinaria , ARN Viral , SARS-CoV-2 , Porcinos , Enfermedades de los Porcinos/virologíaRESUMEN
The ongoing Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks pose a worldwide public health threat. Blocking MERS-CoV zoonotic transmission from dromedary camels, the animal reservoir, could potentially reduce the number of primary human cases. Here we report MERS-CoV transmission from experimentally infected llamas to naïve animals. Directly inoculated llamas shed virus for at least 6 days and could infect all in-contact naïve animals 4-5 days after exposure. With the aim to block virus transmission, we examined the efficacy of a recombinant spike S1-protein vaccine. In contrast to naïve animals, in-contact vaccinated llamas did not shed infectious virus upon exposure to directly inoculated llamas, consistent with the induction of strong virus neutralizing antibody responses. Our data provide further evidence that vaccination of the reservoir host may impede MERS-CoV zoonotic transmission to humans.
Asunto(s)
Infecciones por Coronavirus/prevención & control , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Glicoproteína de la Espiga del Coronavirus/administración & dosificación , Vacunas Virales/administración & dosificación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Camélidos del Nuevo Mundo , Camelus/virología , Infecciones por Coronavirus/virología , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Vacunas Virales/genética , Vacunas Virales/inmunología , Zoonosis/inmunología , Zoonosis/prevención & control , Zoonosis/transmisión , Zoonosis/virologíaRESUMEN
Middle East respiratory syndrome (MERS) represents an important respiratory disease accompanied by lethal outcome in one third of human patients. In recent years, several investigators developed protective antibodies which could be used as prophylaxis in prospective human epidemics. In the current study, eight human monoclonal antibodies (mAbs) with neutralizing and non-neutralizing capabilities, directed against different epitopes of the MERS-coronavirus (MERS-CoV) spike (MERS-S) protein, were investigated with regard to their ability to immunohistochemically detect respective epitopes on formalin-fixed paraffin-embedded (FFPE) nasal tissue sections of MERS-CoV experimentally infected alpacas. The most intense immunoreaction was detected using a neutralizing antibody directed against the receptor binding domain S1B of the MERS-S protein, which produced an immunosignal in the cytoplasm of ciliated respiratory epithelium and along the apical membranous region. A similar staining was obtained by two other mAbs which recognize the sialic acid-binding domain and the ectodomain of the membrane fusion subunit S2, respectively. Five mAbs lacked immunoreactivity for MERS-CoV antigen on FFPE tissue, even though they belong, at least in part, to the same epitope group. In summary, three tested human mAbs demonstrated capacity for detection of MERS-CoV antigen on FFPE samples and may be implemented in double or triple immunohistochemical methods.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Camélidos del Nuevo Mundo/virología , Inmunohistoquímica , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Nariz/virología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Epítopos/inmunología , Formaldehído , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Adhesión en Parafina , Estudios ProspectivosRESUMEN
This study investigated the co-localization of the Middle East respiratory syndrome coronavirus (MERS-CoV) and its receptor dipeptidyl peptidase-4 (DPP4) by immunohistochemistry (IHC) across respiratory and lymphoid organs of experimentally MERS-CoV infected pigs and llamas. Also, scanning electron microscopy was performed to assess the ciliary integrity of respiratory epithelial cells in both species. In pigs, on day 2 post-inoculation (p.i.), DPP4-MERS-CoV co-localization was detected in medial turbinate epithelium. On day 4 p.i., the virus/receptor co-localized in frontal and medial turbinate epithelial cells in pigs, and epithelial cells distributed unevenly through the whole nasal cavity and in the cervical lymph node in llamas. MERS-CoV viral nucleocapsid was mainly detected in upper respiratory tract sites on days 2 and 4 p.i. in pigs and day 4 p.i. in llamas. No MERS-CoV was detected on day 24 p.i. in any tissue by IHC. While pigs showed severe ciliary loss in the nasal mucosa both on days 2 and 4 p.i. and moderate loss in the trachea on days 4 and 24 p.i., ciliation of respiratory organs in llamas was not significantly affected. Obtained data confirm the role of DPP4 for MERS-CoV entry in respiratory epithelial cells of llamas. Notably, several nasal epithelial cells in pigs were found to express viral antigen but not DPP4, suggesting the possible existence of other molecule/s facilitating virus entry or down regulation of DPP4 upon infection.