RESUMEN
Coral reef ecosystems are highly threatened and can be extremely sensitive to the effects of climate change. Multiple shark species rely on coral reefs as important habitat and, as such, play a number of significant ecological roles in these ecosystems. How environmental stress impacts routine, site-attached reef shark behavior, remains relatively unexplored. Here, we combine 8 years of acoustic tracking data (2013-2020) from grey reef sharks resident to the remote coral reefs of the Chagos Archipelago in the Central Indian Ocean, with a satellite-based index of coral reef environmental stress exposure. We show that on average across the region, increased stress on the reefs significantly reduces grey reef shark residency, promoting more diffuse space use and increasing time away from shallow forereefs. Importantly, this impact has a lagged effect for up to 16 months. This may have important physiological and conservation consequences for reef sharks, as well as broader implications for reef ecosystem functioning. As climate change is predicted to increase environmental stress on coral reef ecosystems, understanding how site-attached predators respond to stress will be crucial for forecasting the functional significance of altering predator behavior and the potential impacts on conservation for both reef sharks and coral reefs themselves.
Asunto(s)
Cambio Climático , Arrecifes de Coral , Tiburones , Estrés Fisiológico , Animales , Tiburones/fisiología , Océano Índico , Ecosistema , Conservación de los Recursos NaturalesRESUMEN
Soda lakes are some of the most productive aquatic ecosystems.1 Their alkaline-saline waters sustain unique phytoplankton communities2,3 and provide vital habitats for highly specialized biodiversity including invertebrates, endemic fish species, and Lesser Flamingos (Phoeniconaias minor).1,4 More than three-quarters of Lesser Flamingos inhabit the soda lakes of East Africa5; however, populations are in decline.6 Declines could be attributed to their highly specialized diet of cyanobacteria7 and dependence on a network of soda lake feeding habitats that are highly sensitive to climate fluctuations and catchment degradation.8,9,10,11,12 However, changing habitat availability has not been assessed due to a lack of in situ water quality and hydrology data and the irregular monitoring of these waterbodies.13 Here, we combine satellite Earth observations and Lesser Flamingo abundance observations to quantify spatial and temporal trends in productivity and ecosystem health over multiple decades at 22 soda lakes across East Africa. We found that Lesser Flamingo distributions are best explained by phytoplankton biomass, an indicator of food availability. However, timeseries analyses revealed significant declines in phytoplankton biomass from 1999 to 2022, most likely driven by substantial rises in lake water levels. Declining productivity has reduced the availability of healthy soda lake ecosystems, most notably in equatorial Kenya and northern Tanzania. Our results highlight the increasing vulnerability of Lesser Flamingos and other soda lake biodiversity in East Africa, particularly with increased rainfall predicted under climate change.14,15,16 Without improved lake monitoring and catchment management practices, soda lake ecosystems could be pushed beyond their environmental tolerances. VIDEO ABSTRACT.
Asunto(s)
Lagos , Fitoplancton , Animales , África Oriental , Biodiversidad , Biomasa , Cambio Climático , Ecosistema , Fitoplancton/fisiologíaRESUMEN
A wide array of technologies are available for gaining insight into the movement of wild aquatic animals. Although acoustic telemetry can lack the fine-scale spatial resolution of some satellite tracking technologies, the substantially longer battery life can yield important long-term data on individual behavior and movement for low per-unit cost. Typically, however, receiver arrays are designed to maximize spatial coverage at the cost of positional accuracy leading to potentially longer detection gaps as individuals move out of range between monitored locations. This is particularly true when these technologies are deployed to monitor species in hard-to-access locations.Here, we develop a novel approach to analyzing acoustic telemetry data, using the timing and duration of gaps between animal detections to infer different behaviors. Using the durations between detections at the same and different receiver locations (i.e., detection gaps), we classify behaviors into "restricted" or potential wider "out-of-range" movements synonymous with longer distance dispersal. We apply this method to investigate spatial and temporal segregation of inferred movement patterns in two sympatric species of reef shark within a large, remote, marine protected area (MPA). Response variables were generated using network analysis, and drivers of these movements were identified using generalized linear mixed models and multimodel inference.Species, diel period, and season were significant predictors of "out-of-range" movements. Silvertip sharks were overall more likely to undertake "out-of-range" movements, compared with gray reef sharks, indicating spatial segregation, and corroborating previous stable isotope work between these two species. High individual variability in "out-of-range" movements in both species was also identified.We present a novel gap analysis of telemetry data to help infer differential movement and space use patterns where acoustic coverage is imperfect and other tracking methods are impractical at scale. In remote locations, inference may be the best available tool and this approach shows that acoustic telemetry gap analysis can be used for comparative studies in fish ecology, or combined with other research techniques to better understand functional mechanisms driving behavior.