Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 8(6)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32517022

RESUMEN

To better understand the light regulation of ligninolytic systems in Trametes polyzona KU-RNW027, ligninolytic enzymes-encoding genes were identified and analyzed to determine their transcriptional regulatory elements. Elements of light regulation were investigated in submerged culture. Three ligninolytic enzyme-encoding genes, mnp1, mnp2, and lac1, were found. Cloning of the genes encoding MnP1 and MnP2 revealed distinct deduced amino acid sequences with 90% and 86% similarity to MnPs in Lenzites gibbosa, respectively. These were classified as new members of short-type hybrid MnPs in subfamily A.2 class II fungal secretion heme peroxidase. A light responsive element (LRE), composed of a 5'-CCRCCC-3' motif in both mnp promoters, is reported. Light enhanced MnP activity 1.5 times but not laccase activity. The mnp gene expressions under light condition increased 6.5- and 3.8-fold, respectively. Regulation of laccase gene expression by light was inconsistent with the absence of LREs in their promoter. Blue light did not affect gene expressions but impacted their stability. Reductions of MnP and laccase production under blue light were observed. The details of the molecular mechanisms underlying enzyme production in this white-rot fungus provide useful knowledge for wood degradation relative to illumination condition. These novel observations demonstrate the potential of enhancing ligninolytic enzyme production by this fungus for applications with an eco-friendly approach to bioremediation.

2.
Mycology ; 12(1): 58-67, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-33628609

RESUMEN

Hydrophobin proteins were extracted from Agrocybe cylindracea mycelia, the culture media (potato dextrose broth, PDB), and fruiting bodies. The putative hydrophobins obtained showed approximate sizes ranging from 8.0 to 25.0 kDa, dependent on their source. Multiple hydrophobin protein bands were detected in fruiting bodies. The hydrophobin yielded from aerial mycelia, or fruiting bodies, was approximately 6 mg/g dried weight. The crude extracts were examined for their properties in regards to surface modification, emulsification, and surface activity. Coating of hydrophobic Teflon sheet with crude extract made the surface significantly hydrophilic, whereas exposure of glass surfaces to extracts resulted in enhanced hydrophobicity. Crude extracts from culture media of A. cylindracea displayed emulsifying activity when mixed with hexane and could significantly reduce the surface tension of 60% ethanol and deionised water. The putative hydrophobin protein band from culture media (9.6 kDa), as analysed using LC-MS/MS, contained an amino acid fragment structurally similar to class I hydrophobin proteins from Basidiomycetes.

3.
Mycobiology ; 47(2): 217-229, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31448142

RESUMEN

Two manganese peroxidases (MnPs), MnP1 and MnP2, and a laccase, Lac1, were purified from Trametes polyzona KU-RNW027. Both MnPs showed high stability in organic solvents which triggered their activities. Metal ions activated both MnPs at certain concentrations. The two MnPs and Lac1, played important roles in dye degradation and pharmaceutical products deactivation in a redox mediator-free system. They completely degraded Remazol brilliant blue (25 mg/L) in 10-30 min and showed high degradation activities to Remazol navy blue and Remazol brilliant yellow, while Lac1 could remove 75% of Remazol red. These three purified enzymes effectively deactivated tetracycline, doxycycline, amoxicillin, and ciprofloxacin. Optimal reaction conditions were 50 °C and pH 4.5. The two MnPs were activated by organic solvents and metal ions, indicating the efficacy of using T. polyzona KU-RNW027 for bioremediation of aromatic compounds in environments polluted with organic solvents and metal ions with no need for redox mediator supplements.

4.
Mycobiology ; 46(4): 396-406, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30637148

RESUMEN

A newly isolated white rot fungal strain KU-RNW027 was identified as Trametes polyzona, based on an analysis of its morphological characteristics and phylogenetic data. Aeration and fungal morphology were important factors which drove strain KU-RNW027 to secrete two different ligninolytic enzymes as manganese peroxidase (MnP) and laccase. Highest activities of MnP and laccase were obtained in a continuous shaking culture at 8 and 47 times higher, respectively, than under static conditions. Strain KU-RNW027 existed as pellets and free form mycelial clumps in submerged cultivation with the pellet form producing more enzymes. Fungal biomass increased with increasing amounts of pellet inoculum while pellet diameter decreased. Strain KU-RNW027 formed terminal chlamydospore-like structures in cultures inoculated with 0.05 g/L as optimal pellet inoculum which resulted in highest enzyme production. Enzyme production efficiency of T. polyzona KU-RNW027 depended on fungal pellet morphology as size, porosity, and formation of chlamydospore-like structures.

5.
J Gen Appl Microbiol ; 62(6): 303-312, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-27885193

RESUMEN

The biodegradation of three polycyclic aromatic hydrocarbons (PAHs), phenanthrene, fluorene, and pyrene, by a newly isolated thermotolerant white rot fungal strain RYNF13 from Thailand, was investigated. The strain RYNF13 was identified as Trametes polyzona, based on an analysis of its internal transcribed spacer sequence. The strain RYNF13 was superior to most white rot fungi. The fungus showed excellent removal of PAHs at a high concentration of 100 mg·L-1. Complete degradation of phenanthrene in a mineral salt glucose medium culture was observed within 18 days of incubation at 30°C, whereas 90% of fluorene and 52% of pyrene were degraded under the same conditions. At a high temperature of 42°C, the strain RYNF13 was still able to grow, and degraded approximately 68% of phenanthrene, whereas 48% of fluorene and 30% of pyrene were degraded within 32 days. Thus, the strain RYNF13 is a potential fungus for PAH bioremediation, especially in a tropical environment where the temperature can be higher than 40°C. The strain RYNF13 secreted three different ligninolytic enzymes, manganese peroxidase, laccase, and lignin peroxidase, during PAH biodegradation at 30°C. When the incubation temperature was increased from 30°C to 37°C and 42°C, only two ligninolytic enzymes, manganese peroxidase and laccase, were detectable during the biodegradation. Manganese peroxidase was the major enzyme produced by the fungus. In the culture containing phenanthrene, manganese peroxidase showed the highest enzymatic activity at 179 U·mL-1. T. polyzona RYNF13 was determined as a potential thermotolerant white rot fungus, and suitable for application in the treatment of PAH-containing contaminants.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos/metabolismo , Trametes/metabolismo , Biodegradación Ambiental , Carcinógenos/metabolismo , Carcinógenos/farmacología , Medios de Cultivo/química , ADN Espaciador Ribosómico , Fluorenos/metabolismo , Fluorenos/farmacología , Glucosa/farmacología , Lacasa/biosíntesis , Peroxidasas/biosíntesis , Fenantrenos/metabolismo , Fenantrenos/farmacología , Hidrocarburos Policíclicos Aromáticos/farmacología , Pirenos/metabolismo , Pirenos/farmacología , Temperatura , Tailandia , Trametes/genética , Trametes/crecimiento & desarrollo , Trametes/aislamiento & purificación
6.
Mycobiology ; 44(4): 260-268, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28154483

RESUMEN

Regulation of alkaline-resistant laccase from Perenniporia tephropora KU-Alk4 was proved to be controlled by several factors. One important factor was the initial pH, which drove the fungus to produce different kinds of ligninolytic enzymes. P. tephropora KU-Alk4 could grow at pH 4.5, 7.0, and 8.0. The fungus produced laccase and MnP at pH 7.0, but only laccase at pH 8.0. The specific activity of laccase in the pH 8.0 culture was higher than that in the pH 7.0 culture. At pH 8.0, glucose was the best carbon source for laccase production but growth was better with lactose. Low concentrations of glucose at 0.1% to 1.0% enhanced laccase production, while concentrations over 1% gave contradictory results. Veratryl alcohol induced the production of laccase. A trace concentration of copper ions was required for laccase production. Biomass increased with an increasing rate of aeration of shaking flasks from 100 to 140 rpm; however, shaking at over 120 rpm decreased laccase quantity. Highest amount of laccase produced by KU-Alk4, 360 U/mL, was at pH 8.0 with 1% glucose and 0.2 mM copper sulfate, unshaken for the first 3 days, followed by addition of 0.85 mM veratryl alcohol and shaking at 120 rpm. The crude enzyme was significantly stable in alkaline pH 8.0~10.0 for 24 hr. After treating the pulp mill effluent with the KU-Alk4 system for 3 days, pH decreased from 9.6 to 6.8, with reduction of color and chemical oxygen demand at 83.2% and 81%, respectively. Laccase was detectable during the biotreatment process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...