Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36144759

RESUMEN

Potato (Solanum tuberosum L.) exhibits broad variations in cultivar resistance to tuber and root infections by the soilborne, obligate biotrophic pathogen Spongospora subterranea. Host resistance has been recognised as an important approach in potato disease management, whereas zoospore root attachment has been identified as an effective indicator for the host resistance to Spongospora root infection. However, the mechanism of host resistance to zoospore root attachment is currently not well understood. To identify the potential basis for host resistance to S. subterranea at the molecular level, twelve potato cultivars differing in host resistance to zoospore root attachment were used for comparative proteomic analysis. In total, 3723 proteins were quantified from root samples across the twelve cultivars using a data-independent acquisition mass spectrometry approach. Statistical analysis identified 454 proteins that were significantly more abundant in the resistant cultivars; 626 proteins were more abundant in the susceptible cultivars. In resistant cultivars, functional annotation of the proteomic data indicated that Gene Ontology terms related to the oxidative stress and metabolic processes were significantly over-represented. KEGG pathway analysis identified that the phenylpropanoid biosynthesis pathway was associated with the resistant cultivars, suggesting the potential role of lignin biosynthesis in the host resistance to S. subterranea. Several enzymes involved in pectin biosynthesis and remodelling, such as pectinesterase and pectin acetylesterase, were more abundant in the resistant cultivars. Further investigation of the potential role of root cell wall pectin revealed that the pectinase treatment of roots resulted in a significant reduction in zoospore root attachment in both resistant and susceptible cultivars. This study provides a comprehensive proteome-level overview of resistance to S. subterranea zoospore root attachment across twelve potato cultivars and has identified a potential role for cell wall pectin in regulating zoospore root attachment.


Asunto(s)
Plasmodiophorida , Solanum tuberosum , Lignina/metabolismo , Pectinas/metabolismo , Enfermedades de las Plantas , Plasmodiophorida/genética , Poligalacturonasa/metabolismo , Proteoma/metabolismo , Proteómica , Solanum tuberosum/metabolismo
2.
Viruses ; 14(8)2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36016314

RESUMEN

The genus Polerovirus contains positive-sense, single-stranded RNA plant viruses that cause significant disease in many agricultural crops, including vegetable legumes. This study aimed to identify and determine the abundance of Polerovirus species present within Tasmanian pea crops and surrounding weeds that may act as virus reservoirs. We further sought to examine the genetic diversity of TuYV, the most commonly occurring polerovirus identified. Pea and weed samples were collected during 2019-2020 between October and January from thirty-four sites across three different regions (far northwest, north, and midlands) of Tasmania and tested by RT-PCR assay, with selected samples subject to next-generation sequencing. Results revealed that the presence of polerovirus infection and the prevalence of TuYV in both weeds and pea crops varied across the three Tasmanian cropping regions, with TuYV infection levels in pea crops ranging between 0 and 27.5% of tested plants. Overall, two species members from each genus, Polerovirus and Potyvirus, one member from each of Luteovirus, Potexvirus, and Carlavirus, and an unclassified virus from the family Partitiviridae were also found as a result of NGS data analysis. Analysis of gene sequences of the P0 and P3 genes of Tasmanian TuYV isolates revealed substantial genetic diversity within the collection, with a few isolates appearing more closely aligned with BrYV isolates. Questions remain around the differentiation of TuYV and BrYV species. Phylogenetic inconsistency in the P0 and P3 ORFs supports the concept that recombination may have played a role in TuYV evolution in Tasmania. Results of the evolutionary analysis showed that the selection pressure was higher in the P0 gene than in the P3 gene, and the majority of the codons for each gene are evolving under purifying selection. Future full genome-based analyses of the genetic variations will expand our understanding of the evolutionary patterns existing among TuYV populations in Tasmania.


Asunto(s)
Luteoviridae , Productos Agrícolas , Variación Genética , Pisum sativum , Filogenia , Enfermedades de las Plantas , Malezas
3.
Sci Rep ; 12(1): 10804, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752627

RESUMEN

The pathogen Spongospora subterranea infects potato roots and developing tubers resulting in tuber yield and quality losses. Currently, there are no fully effective treatments for disease control. Host resistance is an important tool in disease management and understanding the molecular mechanisms of defence responses in roots of potato plants is required for the breeding of novel resistant cultivars. Here, we integrated transcriptomic and proteomic datasets to uncover these mechanisms underlying S. subterranea resistance in potato roots. This multi-omics approach identified upregulation of glutathione metabolism at the levels of RNA and protein in the resistant cultivar but not in the susceptible cultivar. Upregulation of the lignin metabolic process, which is an important component of plant defence, was also specific to the resistant cultivar at the transcriptome level. In addition, the inositol phosphate pathway was upregulated in the susceptible cultivar but downregulated in the resistant cultivar in response to S. subterranea infection. We provide large-scale multi-omics data of Spongospora-potato interaction and suggest an important role of glutathione metabolism in disease resistance.


Asunto(s)
Plasmodiophorida , Solanum tuberosum , Glutatión , Fitomejoramiento , Enfermedades de las Plantas/genética , Plasmodiophorida/genética , Proteómica , Solanum tuberosum/genética
4.
Front Plant Sci ; 13: 872901, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498715

RESUMEN

Potato is one of the most important food crops for human consumption. The soilborne pathogen Spongospora subterranea infects potato roots and tubers, resulting in considerable economic losses from diminished tuber yields and quality. A comprehensive understanding of how potato plants respond to S. subterranea infection is essential for the development of pathogen-resistant crops. Here, we employed label-free proteomics and phosphoproteomics to quantify systemically expressed protein-level responses to S. subterranea root infection in potato foliage of the susceptible and resistant potato cultivars. A total of 2,669 proteins and 1,498 phosphoproteins were quantified in the leaf samples of the different treatment groups. Following statistical analysis of the proteomic data, we identified oxidoreductase activity, electron transfer, and photosynthesis as significant processes that differentially changed upon root infection specifically in the resistant cultivar and not in the susceptible cultivar. The phosphoproteomics results indicated increased activity of signal transduction and defense response functions in the resistant cultivar. In contrast, the majority of increased phosphoproteins in the susceptible cultivar were related to transporter activity and sub-cellular localization. This study provides new insight into the molecular mechanisms and systemic signals involved in potato resistance to S. subterranea infection and has identified new roles for protein phosphorylation in the regulation of potato immune response.

5.
Plants (Basel) ; 11(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35406863

RESUMEN

Brassica yellows virus (BrYV), a tentative species in the genus Polerovirus, of the Solemoviridae family, is a phloem-restricted and aphid-transmitted virus with at least three genotypes (A, B, and C). It has been found across mainland China, South Korea, and Japan. BrYV was previously undescribed in Tasmania, and its genetic variability in the state remains unknown. Here, we describe a near-complete genome sequence of BrYV (genotype A) isolated from Raphanus raphanistrum in Tasmania using next-generation sequencing and sanger sequencing of RT-PCR products. BrYV-Tas (GenBank Accession no. OM469309) possesses a genome of 5516 nucleotides (nt) and shares higher sequence identity (about 90%) with other BrYV isolates. Phylogenetic analyses showed variability in the clustering patterns of the individual genes of BrYV-Tas. Recombination analysis revealed beginning and ending breakpoints at nucleotide positions 1922 to 5234 nt, with the BrYV isolate LC428359 and BrYV isolate KY310572 identified as major and minor parents, respectively. Results of the evolutionary analysis showed that the majority of the codons for each gene are evolving under purifying selection, though a few codons were also detected to have positive selection pressure. Taken together, our findings will facilitate an understanding of the evolutionary dynamics and genetic diversity of BrYV.

6.
Front Microbiol ; 13: 754225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300485

RESUMEN

Ca2+ signaling regulates physiological processes including chemotaxis in eukaryotes and prokaryotes. Its inhibition has formed the basis for control of human disease but remains largely unexplored for plant disease. This study investigated the role of Ca2+ signaling on motility and chemotaxis of Spongospora subterranea zoospores, responsible for root infections leading to potato root and tuber disease. Cytosolic Ca2+ flux inhibition with Ca2+ antagonists were found to alter zoospore swimming patterns and constrain zoospore chemotaxis, root attachment and zoosporangia infection. LaCl3 and GdCl3, both Ca2+ channel blockers, at concentrations ≥ 50 µM showed complete inhibition of zoospore chemotaxis, root attachment and zoosporangia root infection. The Ca2+ chelator EGTA, showed efficient chemotaxis inhibition but had relatively less effect on root attachment. Conversely the calmodulin antagonist trifluoperazine had lesser effect on zoospore chemotaxis but showed strong inhibition of zoospore root attachment. Amiloride hydrochloride had a significant inhibitory effect on chemotaxis, root attachment, and zoosporangia root infection with dose rates ≥ 150 µM. As expected, zoospore attachment was directly associated with root infection and zoosporangia development. These results highlight the fundamental role of Ca2+ signaling in zoospore chemotaxis and disease establishment. Their efficient interruption may provide durable and practical control of Phytomyxea soilborne diseases in the field.

7.
Proteomes ; 10(1)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35225985

RESUMEN

The interaction between plants and pathogenic microorganisms is a multifaceted process mediated by both plant- and pathogen-derived molecules, including proteins, metabolites, and lipids. Large-scale proteome analysis can quantify the dynamics of proteins, biological pathways, and posttranslational modifications (PTMs) involved in the plant-pathogen interaction. Mass spectrometry (MS)-based proteomics has become the preferred method for characterizing proteins at the proteome and sub-proteome (e.g., the phosphoproteome) levels. MS-based proteomics can reveal changes in the quantitative state of a proteome and provide a foundation for understanding the mechanisms involved in plant-pathogen interactions. This review is intended as a primer for biologists that may be unfamiliar with the diverse range of methodology for MS-based shotgun proteomics, with a focus on techniques that have been used to investigate plant-pathogen interactions. We provide a summary of the essential steps required for shotgun proteomic studies of plants, pathogens and plant-pathogen interactions, including methods for protein digestion, identification, separation, and quantification. Finally, we discuss how protein PTMs may directly participate in the interaction between a pathogen and its host plant.

8.
Biology (Basel) ; 10(9)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34571717

RESUMEN

Spongospora subterranea is an obligate biotrophic pathogen, causing substantial economic loss to potato industries globally. Currently, there are no fully effective management strategies for the control of potato diseases caused by S. subterranea. To further our understanding of S. subterranea biology during infection, we characterized the transcriptome and proteome of the pathogen during the invasion of roots of a susceptible and a resistant potato cultivar. A total of 7650 transcripts from S. subterranea were identified in the transcriptome analysis in which 1377 transcripts were differentially expressed between two cultivars. In proteome analysis, we identified 117 proteins with 42 proteins significantly changed in comparisons between resistant and susceptible cultivars. The functional annotation of transcriptome data indicated that the gene ontology terms related to the transportation and actin processes were induced in the resistant cultivar. The downregulation of enzyme activity and nucleic acid metabolism in the resistant cultivar suggests a probable influence of these processes in the virulence of S. subterranea. The protein analysis results indicated that the majority of differentially expressed proteins were related to the metabolic processes and transporter activity. The present study provides a comprehensive molecular insight into the multiple layers of gene regulation that contribute to S. subterranea infection and development in planta and illuminates the role of host immunity in affecting pathogen responses.

9.
Front Microbiol ; 12: 691877, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234764

RESUMEN

For soilborne pathogens, germination of the resting or dormant propagule that enables persistence within the soil environment is a key point in pathogenesis. Spongospora subterranea is an obligate soilborne protozoan that infects the roots and tubers of potato causing root and powdery scab disease for which there are currently no effective controls. A better understanding of the molecular basis of resting spore germination of S. subterranea could be important for development of novel disease interventions. However, as an obligate biotroph and soil dwelling organism, the application of new omics techniques for the study of the pre-infection process in S. subterranea has been problematic. Here, RNA sequencing was used to analyse the reprogramming of S. subterranea resting spores during the transition to zoospores in an in-vitro model. More than 63 million mean high-quality reads per sample were generated from the resting and germinating spores. By using a combination of reference-based and de novo transcriptome assembly, 6,664 unigenes were identified. The identified unigenes were subsequently annotated based on known proteins using BLAST search. Of 5,448 annotated genes, 570 genes were identified to be differentially expressed during the germination of S. subterranea resting spores, with most of the significant genes belonging to transcription and translation, amino acids biosynthesis, transport, energy metabolic processes, fatty acid metabolism, stress response and DNA repair. The datasets generated in this study provide a basic knowledge of the physiological processes associated with spore germination and will facilitate functional predictions of novel genes in S. subterranea and other plasmodiophorids. We introduce several candidate genes related to the germination of an obligate biotrophic soilborne pathogen which could be applied to the development of antimicrobial agents for soil inoculum management.

10.
Biol Rev Camb Philos Soc ; 96(4): 1603-1615, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33821562

RESUMEN

Attempts at management of diseases caused by protozoan plant parasitic Phytomyxea have often been ineffective. The dormant life stage is characterised by long-lived highly robust resting spores that are largely impervious to chemical treatment and environmental stress. This review explores some life stage weaknesses and highlights possible control measures associated with resting spore germination and zoospore taxis. With phytomyxid pathogens of agricultural importance, zoospore release from resting spores is stimulated by plant root exudates. On germination, the zoospores are attracted to host roots by chemoattractant components of root exudates. Both the relatively metabolically inactive resting spore and motile zoospore need to sense the chemical environment to determine the suitability of these germination stimulants or attractants respectively, before they can initiate an appropriate response. Blocking such sensing could inhibit resting spore germination or zoospore taxis. Conversely, the short life span and the vulnerability of zoospores to the environment require them to infect their host within a few hours after release. Identifying a mechanism or conditions that could synchronise resting spore germination in the absence of host plants could lead to diminished pathogen populations in the field.


Asunto(s)
Germinación , Plantas
11.
Environ Microbiol Rep ; 13(4): 521-532, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33928759

RESUMEN

The soil-borne and obligate plant-associated nature of S. subterranea has hindered a detailed study of this pathogen and in particular, the regulatory pathways driving the germination of S. subterranea remain unknown. To better understand the mechanisms that control the transition from dormancy to germination, protein profiles between dormant and germination stimulant-treated resting spores were compared using label-free quantitative proteomics. Among the ~680 proteins identified 20 proteins were found to be differentially expressed during the germination of S. subterranea resting spores. Elongation factor Tu, histones (H2A and H15), proteasome and DJ-1_PfpI, involved in transcription and translation, were upregulated during the germination of resting spores. Downregulation of both actin and beta-tubulin proteins occurred in the germinating spores, indicating that the changes in the cell wall cytoskeleton may be necessary for the morphological changes during the germination of the resting spore in S. subterranea. Our findings provide new approaches for the study of these and similar recalcitrant micro-organisms provide the first insights into the basic protein components of S. subterranea spores. A better understanding of S. subterranea biology may lead to the development of novel approaches for the management of persistent soil inoculum.


Asunto(s)
Plasmodiophorida , Proteómica , Pared Celular
12.
Arch Virol ; 166(6): 1575-1589, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33738562

RESUMEN

This study examined the natural and experimental host range and aphid and graft transmission of the tentative polerovirus phasey bean mild yellows virus (PBMYV). Eleven complete coding sequences from PBMYV isolates were determined from a range of hosts and locations. We found two genetically distinct variants of PBMYV. PBMYV-1 was the originally described variant, and PBMYV-2 had a large putative recombination in open reading frame 5 such that PBMYV-1 and PBMYV-2 shared only 65-66% amino acid sequence identity in the P5 protein. The virus was transmitted by a clonal colony of cowpea aphids (Aphis craccivora) and by grafting with infected scions but was not transmitted by a clonal colony of green peach aphids (Myzus persicae). PBMYV was found in natural infections in 11 host species with a range of symptoms and severity, including seven important grain legume crops from across a wide geographic area in Australia. PBMYV was common and widespread in the tropical weed phasey bean (Macroptilium lathyroides), but it is likely that there are other major alternative hosts for the virus in temperate regions of Australia. The experimental host range of PBMYV included the Fabaceae hosts chickpea (Cicer arietinum), faba bean (Vicia faba), pea (Pisum sativum), and phasey bean, but transmissions failed to infect several other members of the families Asteraceae, Cucurbitaceae, Fabaceae and Solanaceae. PBMYV was commonly found in grain legume crops in eastern and western Australia, sometimes at greater than 90% incidence. This new knowledge about PBMYV warrants further assessments of its economic impact on important grain legume crops.


Asunto(s)
Fabaceae/virología , Variación Genética , Virus de Plantas/genética , Virus de Plantas/fisiología , Animales , Áfidos/virología , Australia , Filogenia , Enfermedades de las Plantas/virología
13.
PLoS One ; 15(9): e0235522, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32946481

RESUMEN

Light conditions in retail stores may contribute to potato greening. In this study, we aimed to develop a potato tuber greening risk rating model for retail stores based on light quality and intensity parameters. This was achieved by firstly exposing three potato varieties (Nicola, Maranca and Kennebec) to seven specific light wavelengths (370, 420, 450, 530, 630, 660 and 735 nm) to determine the tuber greening propensity. Detailed light quality and intensity measurements from 25 retail stores were then combined with the greening propensity data to develop a tuber greening risk rating model. Our study showed that maximum greening occurred under blue light (450 nm), while 53%, 65% and 75% less occurred under green (530 nm), red (660 nm) and orange (630 nm) light, respectively. Greening risk, which varied between stores, was found to be related to light intensity level, and partially explained potato stock loss in stores. Our results from this study suggested that other in-store management practices, including lighting duration, average potato turnover, and light protection during non-retail periods, likely influence tuber greening risk.


Asunto(s)
Luz/efectos adversos , Iluminación/efectos adversos , Tubérculos de la Planta/efectos de la radiación , Solanum tuberosum/efectos de la radiación , Verduras/efectos de la radiación , Comercio , Calidad de los Alimentos , Almacenamiento de Alimentos/métodos , Iluminación/instrumentación , Iluminación/métodos , Tubérculos de la Planta/metabolismo , Medición de Riesgo/métodos , Factores de Riesgo , Solanum tuberosum/economía , Solanum tuberosum/metabolismo , Factores de Tiempo , Verduras/economía , Verduras/metabolismo
14.
Molecules ; 25(14)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650423

RESUMEN

Spongospora subterranea is a soil-borne plant pathogen responsible for the economically significant root and powdery scab diseases of potato. However, the obligate biotrophic nature of S. subterranea has made the detailed study of the pathogen problematic. Here, we first compared the benefits of sporosori partial purification utilizing Ludox® gradient centrifugation. We then undertook optimization efforts for protein isolation comparing the use of a urea buffer followed by single-pot solid-phase-enhanced sample preparation (SP3) and a sodium dodecyl sulphate (SDS) buffer followed by suspension-trapping (S-Trap). Label-free, quantitative proteomics was then used to evaluate the efficiency of the sporosori purification and the protein preparation methods. The purification protocol produced a highly purified suspension of S. subterranea sporosori without affecting the viability of the spores. The results indicated that the use of a combination of SDS and S-Trap for sample clean-up and digestion obtained a significantly higher number of identified proteins compared to using urea and SP3, with 218 and 652 proteins identified using the SP3 and S-Trap methods, respectively. The analysis of proteins by mass spectrometry showed that the number of identified proteins increased by approximately 40% after the purification of spores by Ludox®. These results suggested a potential use of the described spore purification and protein preparation methods for the proteomics study of obligate biotrophic pathogens such as S. subterranea.


Asunto(s)
Enfermedades de las Plantas/microbiología , Proteínas Protozoarias/química , Proteínas Protozoarias/aislamiento & purificación , Rhizaria/química
15.
New Phytol ; 225(3): 1273-1284, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31758555

RESUMEN

Light-induced tuber greening is one of the most important quality defects of potato. Although varietal and maturity factors are known to affect greening resistance, physiological mechanisms of resistance are poorly understood. We proposed that physiological and biochemical factors within the tuber periderm provide resistance and hypothesised that resistance is primarily related to suberin content. We investigated differences in the tuber periderm between genotypes and tuber maturities that varied in greening propensity. We examined suberin and light-induced pigment accumulation, and phellem cell development and studied greening propensity in mutant and chemically treated tubers with enhanced suberisation. Resistance to greening was strongly linked to increased suberin in the periderm, which varied with variety and tuber maturity. Furthermore, greening was reduced in mutant and chemically treated tubers with enhanced suberisation. Increases in phellem cell layers and light-induced carotenoids and anthocyanins were identified as secondary resistance factors. Our work represents the first physiological mechanism of varietal and tuber maturity resistance to greening, expanding the known functionality of suberin and providing for the first time a biomarker that will aid producers and breeders in selection and improvement of potato varieties for greening resistance.


Asunto(s)
Lípidos/química , Tubérculos de la Planta/metabolismo , Solanum tuberosum/anatomía & histología , Solanum tuberosum/metabolismo , Antocianinas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Lípidos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/efectos de la radiación , Solanum tuberosum/genética , Solanum tuberosum/efectos de la radiación
16.
J Agric Food Chem ; 64(40): 7466-7474, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27640528

RESUMEN

Root exudation has importance in soil chemical ecology influencing rhizosphere microbiota. Prior studies reported root exudates from host and nonhost plants stimulated resting spore germination of Spongospora subterranea, the powdery scab pathogen of potato, but the identities of stimulatory compounds were unknown. This study showed that potato root exudates stimulated S. subterranea resting spore germination, releasing more zoospores at an earlier time than the control. We detected 24 low molecular weight organic compounds within potato root exudates and identified specific amino acids, sugars, organic acids, and other compounds that were stimulatory to S. subterranea resting spore germination. Given that several stimulatory compounds are commonly found in exudates of diverse plant species, we support observations of nonhost-specific stimulation. We provide knowledge of S. subterranea resting spore biology and chemical ecology that may be useful in formulating new disease management strategies.


Asunto(s)
Exudados de Plantas/farmacología , Raíces de Plantas/metabolismo , Plasmodiophorida/patogenicidad , Solanum tuberosum/metabolismo , Esporas Protozoarias/efectos de los fármacos , Cromatografía Liquida/métodos , Interacciones Huésped-Patógeno , Espectrometría de Masas/métodos , Metaboloma , Exudados de Plantas/química , Exudados de Plantas/metabolismo , Raíces de Plantas/microbiología , Plasmodiophorida/efectos de los fármacos , Plasmodiophorida/fisiología , Solanum tuberosum/microbiología , Esporas Protozoarias/patogenicidad , Esporas Protozoarias/fisiología
17.
Phytopathology ; 106(5): 474-83, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26780437

RESUMEN

Common scab, a globally important potato disease, is caused by infection of tubers with pathogenic Streptomyces spp. Previously, disease-resistant potato somaclones were obtained through cell selections against the pathogen's toxin, known to be essential for disease. Further testing revealed that these clones had broad-spectrum resistance to diverse tuber-invading pathogens, and that resistance was restricted to tuber tissues. The mechanism of enhanced disease resistance was not known. Tuber periderm tissues from disease-resistant clones and their susceptible parent were examined histologically following challenge with the pathogen and its purified toxin. Relative expression of genes associated with tuber suberin biosynthesis and innate defense pathways within these tissues were also examined. The disease-resistant somaclones reacted to both pathogen and toxin by producing more phellem cell layers in the tuber periderm, and accumulating greater suberin polyphenols in these tissues. Furthermore, they had greater expression of genes associated with suberin biosynthesis. In contrast, signaling genes associated with innate defense responses were not differentially expressed between resistant and susceptible clones. The resistance phenotype is due to induction of increased periderm cell layers and suberization of the tuber periderm preventing infection. The somaclones provide a valuable resource for further examination of suberization responses and its genetic control.


Asunto(s)
Tubérculos de la Planta/inmunología , Solanum tuberosum/inmunología , Expresión Génica , Lípidos/biosíntesis , Mutación , Inmunidad de la Planta , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
18.
Plant Cell Rep ; 35(2): 347-56, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26518425

RESUMEN

KEY MESSAGE: The Arabidopsis mutant ( ucu2 - 2/gi - 2 ) is thaxtomin A, isoxaben and NPA-sensitive indicated by root growth and ion flux responses providing new insights into these compounds mode of action and interactions. Thaxtomin A (TA) is a cellulose biosynthetic inhibitor (CBI) that promotes plant cell hypertrophy and cell death. Electrophysiological analysis of steady-state K(+) and Ca(2+) fluxes in Arabidopsis thaliana roots pretreated with TA for 24 h indicated a disturbance in the regulation of ion movement across the plant cell membrane. The observed inability to control solute movement, recorded in rapidly growing meristematic and elongation root zones, may partly explain typical root toxicity responses to TA treatment. Of note, the TA-sensitive mutant (ucu2-2/gi-2) was more susceptible with K(+) and Ca(2+) fluxes altered between 1.3 and eightfold compared to the wild-type control where fluxes altered between 1.2 and threefold. Root growth inhibition assays showed that the ucu2-2/gi-2 mutant had an increased sensitivity to the auxin 2,4-D, but not IAA or NAA; it also had increased sensitivity to the auxin efflux transport inhibitor, 1-naphthylphthalamic acid (NPA), but not 2,3,5- Triiodobenzoic acid (TIBA), when compared to the WT. The NPA sensitivity data were supported by electrophysiological analysis of H(+) fluxes in the mature (but not elongation) root zone. Increased sensitivity to the CBI, isoxaben (IXB), but not dichlobenil was recorded. Increased sensitivity to both TA and IXB corresponded with higher levels of accumulation of these toxins in the root tissue, compared to the WT. Further root growth inhibition assays showed no altered sensitivity of ucu2-2/gi-2 to two other plant pathogen toxins, alternariol and fusaric acid. Identification of a TA-sensitive Arabidopsis mutant provides further insight into how this CBI toxin interacts with plant cells.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Indoles/toxicidad , Piperazinas/toxicidad , Raíces de Plantas/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/genética , Mutación , Raíces de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Plant Dis ; 100(5): 946-952, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-30686150

RESUMEN

Twelve cultivars of groundnut were screened in field trials for resistance to groundnut rosette disease (GRD), caused by coinfection with Groundnut rosette assistor virus (GRAV), Groundnut rosette virus (GRV), and its satellite RNA in the coastal savannah of Ghana. 'Oboshie' groundnut was rated as highly resistant; 'Bremaowuo', 'Nkatefufuo', and 'Behenase' as resistant; and 'Nkosuor', 'Kumawu', and 'Otuhia' as moderately resistant. GRAV infection rates of 11.8 to 61.8% (dry season) and 13.9 to 100% (wet season) were found, which included symptomless plants, suggesting that some lacked coinfection with GRV and its satellite. Chlorotic ringspot and line-pattern symptoms were observed, suggesting infection with Groundnut ringspot virus (GRSV). Virus identity was confirmed by enzyme-linked immunosorbent assay, reverse-transcription polymerase chain reaction, and amplicon sequencing. This is the first report of GRSV in Ghana. GRSV infection rates were 0.0 to 69.5% (dry season) and 26.1 to 69.5% (wet season). Mixed infections of GRAV and GRSV were common in all cultivars except Nkosuor and Bremaowuo in the dry season. Most cultivars graft inoculated with GRD showed significantly reduced height, leaf area, chlorophyll content, dry haulm weight, and seed yield compared with healthy plants. The sources of resistance to GRD and possibly GRAV and GRSV identified in this study could be exploited in groundnut breeding programs.

20.
PLoS One ; 10(9): e0137647, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26352757

RESUMEN

Spongospora subterranea is responsible for significant potato root and tuber disease globally. Study of this obligate (non-culturable) pathogen that infects below-ground plant parts is technically difficult. The capacity to measure the dynamics and patterns of root infections can greatly assist in determining the efficacy of control treatments on disease progression. This study used qPCR and histological analysis in time-course experiments to measure temporal patterns of pathogen multiplication and disease development in potato (and tomato) roots and tubers. Effects of delayed initiation of infection and fungicidal seed tuber and soil treatments were assessed. This study found roots at all plant developmental ages were susceptible to infection but that delaying infection significantly reduced pathogen content and resultant disease at final harvest. The pathogen was first detected in roots 15-20 days after inoculation (DAI) and the presence of zoosporangia noted 15-45 DAI. Following initial infection pathogen content in roots increased at a similar rate regardless of plant age at inoculation. All fungicide treatments (except soil-applied mancozeb which had a variable response) suppressed pathogen multiplication and root and tuber disease. In contrast to delayed inoculation, the fungicide treatments slowed disease progress (rate) rather than delaying onset of infection. Trials under suboptimal temperatures for disease expression provided valuable data on root infection rate, demonstrating the robustness of monitoring root infection. These results provide an early measure of the efficacy of control treatments and indicate two possible patterns of disease suppression by either delayed initiation of infection which then proceeds at a similar rate or diminished epidemic rate.


Asunto(s)
Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Plasmodiophorida/patogenicidad , Solanum tuberosum/microbiología , Resistencia a la Enfermedad/genética , Fungicidas Industriales/farmacología , Raíces de Plantas/efectos de los fármacos , Plasmodiophorida/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/microbiología , Microbiología del Suelo , Solanum tuberosum/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA