RESUMEN
C-Met is a receptor tyrosine kinase that is overexpressed in a range of different cancer types, and has been identified as a potential biomarker for cancer imaging and therapy. Previously, a 68Ga-labelled peptide, [68Ga]Ga-EMP-100, has shown promise for imaging c-Met in renal cell carcinoma in humans. Herein, we report the synthesis and preliminary biological evaluation of an [18F]AlF-labelled analogue, [18F]AlF-EMP-105, for c-Met imaging by positron emission tomography. EMP-105 was radiolabelled using the aluminium-[18F]fluoride method with 46 ± 2% RCY and >95% RCP in 35-40 min. In vitro evaluation showed that [18F]AlF-EMP-105 has a high specificity for c-Met-expressing cells. Radioactive metabolite analysis at 5 and 30 min post-injection revealed that [18F]AlF-EMP-105 has good blood stability, but undergoes transformation-transchelation, defluorination or demetallation-in the liver and kidneys. PET imaging in non-tumour-bearing mice showed high radioactive accumulation in the kidneys, bladder and urine, demonstrating that the tracer is cleared predominantly as [18F]fluoride by the renal system. With its high specificity for c-Met expressing cells, [18F]AlF-EMP-105 shows promise as a potential diagnostic tool for imaging cancer.
RESUMEN
The production of 18F-labelled microbubbles (MBs) via the aluminium-[18F]fluoride ([18F]AlF) radiolabelling method and facile inverse-electron-demand Diels-Alder (IEDDA) 'click' chemistry is reported. An [18F]AlF-NODA-labelled tetrazine was synthesised in excellent radiochemical yield (>95% RCY) and efficiently conjugated to a trans-cyclooctene (TCO) functionalised phospholipid (40-50% RCY), which was incorporated into MBs (40-50% RCY). To demonstrate the potential of producing 18F-labelled MBs for clinical studies, we also describe a kit-based approach which is amenable for use in a hospital radiopharmacy setting.