Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 21684, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38066107

RESUMEN

Glycosyltransferases (GTs) are enzymes that catalyze the formation of glycosidic bonds and hundreds of GTs have been identified so far in humans. Glycosyltransferase 8 domain-containing protein 1 (GLT8D1) has been associated with central nervous system diseases and cancer. However, evidence on its enzymatic properties, including its substrates, has been scarcely described. In this paper, we have produced and purified recombinant secretory GLT8D1. The enzyme was found to be N-glycosylated. Differential scanning fluorimetry was employed to analyze the stabilization of GLT8D1 by Mn2+ and nucleotides, revealing UDP as the most stabilizing nucleotide scaffold. GLT8D1 displayed glycosyltransferase activity from UDP-galactose onto N-acetylgalactosamine but with a low efficiency. Modeling of the structure revealed similarities with other GT-A fold enzymes in CAZy family GT8 and glycosyltransferases in other families with galactosyl-, glucosyl-, and xylosyltransferase activities, each with retaining catalytic mechanisms. Our study provides novel structural and functional insights into the properties of GLT8D1 with implications in pathological processes.


Asunto(s)
Galactosiltransferasas , Glicosiltransferasas , Humanos , Galactosiltransferasas/metabolismo , Glicosiltransferasas/metabolismo , Catálisis , Uridina Difosfato
2.
Plant Physiol Biochem ; 201: 107782, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37315349

RESUMEN

The first enzyme in the pathway involving branched-chain amino is acetohydroxyacid synthase (AHAS, E.C. 2.2.1.6), which is inhibited by five commercial herbicide families. In this work a computational study of a point mutation of Proline-197-Serine of the Soybean AHAS enzyme, which was obtained by mutagenesis, explains the latter's S197 resistance to the commonly used Chlorsulfuron. Using protein-ligand docking and large-scale sampling and distributions from AlphaFold-generated the resistant and susceptible soybean AHAS protein structure. The computational approach here is scaled to screen for mutation probabilities of protein binding sites, similar to screening compounds for potential hits in therapeutic design using the docking software. P197 and S197 AHAS structures were found to be different even if only one amino acid was changed. The non-specific distribution of bindings in the S197 cavity after the P197S change has been rigorously calculated by RMSD analysis that it would require x20 more concentrations to fill the P197 site by the same amount. There is no previously performed detailed chlorsulfuron soybean P197S AHAS binding calculation. In the herbicide site of AHAS, several amino acids interact - a computational study could elucidate the optimal choice of point mutations for herbicidal resistance either individually or collectively by mutations one at a time and analyzing the effects with a set of herbicides individually. With a computational approach, enzymes involved in crop research and development could be analyzed more quickly, enabling faster discovery and development of herbicides.


Asunto(s)
Acetolactato Sintasa , Herbicidas , Glycine max/genética , Glycine max/metabolismo , Sulfonamidas , Herbicidas/farmacología , Herbicidas/química , Mutación/genética , Aminoácidos , Acetolactato Sintasa/genética , Resistencia a los Herbicidas/genética
3.
J Biol Chem ; 298(8): 102212, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780833

RESUMEN

Hydrophobic cores are fundamental structural properties of proteins typically associated with protein folding and stability; however, how the hydrophobic core shapes protein evolution and function is poorly understood. Here, we investigated the role of conserved hydrophobic cores in fold-A glycosyltransferases (GT-As), a large superfamily of enzymes that catalyze formation of glycosidic linkages between diverse donor and acceptor substrates through distinct catalytic mechanisms (inverting versus retaining). Using hidden Markov models and protein structural alignments, we identify similarities in the phosphate-binding cassette (PBC) of GT-As and unrelated nucleotide-binding proteins, such as UDP-sugar pyrophosphorylases. We demonstrate that GT-As have diverged from other nucleotide-binding proteins through structural elaboration of the PBC and its unique hydrophobic tethering to the F-helix, which harbors the catalytic base (xED-Asp). While the hydrophobic tethering is conserved across diverse GT-A fold enzymes, some families, such as B3GNT2, display variations in tethering interactions and core packing. We evaluated the structural and functional impact of these core variations through experimental mutational analysis and molecular dynamics simulations and find that some of the core mutations (T336I in B3GNT2) increase catalytic efficiency by modulating the conformational occupancy of the catalytic base between "D-in" and acceptor-accessible "D-out" conformation. Taken together, our studies support a model of evolution in which the GT-A core evolved progressively through elaboration upon an ancient PBC found in diverse nucleotide-binding proteins, and malleability of this core provided the structural framework for evolving new catalytic and substrate-binding functions in extant GT-A fold enzymes.


Asunto(s)
Glicosiltransferasas , Pliegue de Proteína , Glicosiltransferasas/metabolismo , Humanos , Conformación Molecular , Simulación de Dinámica Molecular , Nucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...