Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(2): e0275044, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36735650

RESUMEN

Urban grasslands are crucial for biodiversity and ecosystem services in cities, while little is known about their multifunctionality under climate change. Thus, we investigated the effects of simulated climate change, i.e., increased [CO2] and temperature, and reduced precipitation, on individual functions and overall multifunctionality in mesocosm grasslands sown with forbs and grasses in four different proportions aiming at mimicking road verge grassland patches. Climate change scenarios RCP2.6 (control) and RCP8.5 (worst-case) were simulated in walk-in climate chambers of an ecotron facility, and watering was manipulated for normal vs. reduced precipitation. We measured eight indicator variables of ecosystem functions based on below- and aboveground characteristics. The young grassland communities responded to higher [CO2] and warmer conditions with increased vegetation cover, height, flower production, and soil respiration. Lower precipitation affected carbon cycling in the ecosystem by reducing biomass production and soil respiration. In turn, the water regulation capacity of the grasslands depended on precipitation interacting with climate change scenario, given the enhanced water efficiency resulting from increased [CO2] under RCP8.5. Multifunctionality was negatively affected by reduced precipitation, especially under RCP2.6. Trade-offs arose among single functions that performed best in either grass- or forb-dominated grasslands. Grasslands with an even ratio of plant functional types coped better with climate change and thus are good options for increasing the benefits of urban green infrastructure. Overall, the study provides experimental evidence of the effects of climate change on the functionality of urban ecosystems. Designing the composition of urban grasslands based on ecological theory may increase their resilience to global change.


Asunto(s)
Cambio Climático , Ecosistema , Pradera , Dióxido de Carbono , Poaceae , Agua , Suelo/química
2.
Plants (Basel) ; 10(4)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33920882

RESUMEN

Grassland biodiversity is declining due to climatic change, land-use intensification, and establishment of invasive plant species. Excluding or suppressing invasive species is a challenge for grassland management. An example is Jacobaea aquatica, an invasive native plant in wet grasslands of Central Europe, that is causing problems to farmers by being poisonous, overabundant, and fast spreading. This study aimed at testing designed grassland communities in a greenhouse experiment, to determine key drivers of initial J. aquatica suppression, thus dismissing the use of pesticides. We used two base communities (mesic and wet grasslands) with three plant traits (plant height, leaf area, seed mass), that were constrained and diversified based on the invader traits. Native biomass, community-weighted mean trait values, and phylogenetic diversity (PD) were used as explanatory variables to understand variation in invasive biomass. The diversified traits leaf area and seed mass, PD, and native biomass significantly affected the invader. High native biomass permanently suppressed the invader, while functional traits needed time to develop effects; PD effects were significant at the beginning of the experiment but disappeared over time. Due to complexity and temporal effects, community weighted mean traits proved to be moderately successful for increasing invasion resistance of designed grassland communities.

3.
Glob Chang Biol ; 27(7): 1387-1407, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33274502

RESUMEN

Ecosystems integrity and services are threatened by anthropogenic global changes. Mitigating and adapting to these changes require knowledge of ecosystem functioning in the expected novel environments, informed in large part through experimentation and modelling. This paper describes 13 advanced controlled environment facilities for experimental ecosystem studies, herein termed ecotrons, open to the international community. Ecotrons enable simulation of a wide range of natural environmental conditions in replicated and independent experimental units while measuring various ecosystem processes. This capacity to realistically control ecosystem environments is used to emulate a variety of climatic scenarios and soil conditions, in natural sunlight or through broad-spectrum lighting. The use of large ecosystem samples, intact or reconstructed, minimizes border effects and increases biological and physical complexity. Measurements of concentrations of greenhouse trace gases as well as their net exchange between the ecosystem and the atmosphere are performed in most ecotrons, often quasi continuously. The flow of matter is often tracked with the use of stable isotope tracers of carbon and other elements. Equipment is available for measurements of soil water status as well as root and canopy growth. The experiments ran so far emphasize the diversity of the hosted research. Half of them concern global changes, often with a manipulation of more than one driver. About a quarter deal with the impact of biodiversity loss on ecosystem functioning and one quarter with ecosystem or plant physiology. We discuss how the methodology for environmental simulation and process measurements, especially in soil, can be improved and stress the need to establish stronger links with modelling in future projects. These developments will enable further improvements in mechanistic understanding and predictive capacity of ecotron research which will play, in complementarity with field experimentation and monitoring, a crucial role in exploring the ecosystem consequences of environmental changes.


Asunto(s)
Ecosistema , Ciencia Ambiental , Biodiversidad , Ecología , Suelo
4.
Plants (Basel) ; 9(1)2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31906387

RESUMEN

Ecosystem properties can be positively affected by plant functional diversity and compromised by invasive alien plants. We performed a community assembly study in mesocosms manipulating different functional diversity levels for native grassland plants (communities composed by 1, 2 or 3 functional groups) to test if functional dispersion could constrain the impacts of an invasive alien plant (Solidago gigantea) on soil fertility and plant community biomass via complementarity. Response variables were soil nutrients, soil water nutrients and aboveground biomass. We applied linear mixed-effects models to assess the effects of functional diversity and S. gigantea on plant biomass, soil and soil water nutrients. A structural equation model was used to evaluate if functional diversity and invasive plants affect soil fertility directly or indirectly via plant biomass and soil pH. Invaded communities had greater total biomass but less native plant biomass than uninvaded ones. While functional diversity increased nutrient availability in the soil solution of uninvaded communities, invasive plants reduced nutrient concentration in invaded soils. Functional diversity indirectly affected soil water but not soil nutrients via plant biomass, whereas the invader reduced native plant biomass and disrupted the effects of diversity on nutrients. Moreover, invasive plants reduced soil pH and compromised phosphate uptake by plants, which can contribute to higher phosphate availability and its possible accumulation in invaded soils. We found little evidence for functional diversity to constrain invasion impacts on nutrients and plant biomass. Restoration of such systems should consider other plant community features than plant trait diversity to reduce establishment of invasive plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...