Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 18(9): e1010372, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36178933

RESUMEN

Homeobox genes are prominent regulators of neuronal identity, but the extent to which their function has been probed in animal nervous systems remains limited. In the nematode Caenorhabditis elegans, each individual neuron class is defined by the expression of unique combinations of homeobox genes, prompting the question of whether each neuron class indeed requires a homeobox gene for its proper identity specification. We present here progress in addressing this question by extending previous mutant analysis of homeobox gene family members and describing multiple examples of homeobox gene function in different parts of the C. elegans nervous system. To probe homeobox function, we make use of a number of reporter gene tools, including a novel multicolor reporter transgene, NeuroPAL, which permits simultaneous monitoring of the execution of multiple differentiation programs throughout the entire nervous system. Using these tools, we add to the previous characterization of homeobox gene function by identifying neuronal differentiation defects for 14 homeobox genes in 24 distinct neuron classes that are mostly unrelated by location, function and lineage history. 12 of these 24 neuron classes had no homeobox gene function ascribed to them before, while in the other 12 neuron classes, we extend the combinatorial code of transcription factors required for specifying terminal differentiation programs. Furthermore, we demonstrate that in a particular lineage, homeotic identity transformations occur upon loss of a homeobox gene and we show that these transformations are the result of changes in homeobox codes. Combining the present with past analyses, 113 of the 118 neuron classes of C. elegans are now known to require a homeobox gene for proper execution of terminal differentiation programs. Such broad deployment indicates that homeobox function in neuronal identity specification may be an ancestral feature of animal nervous systems.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Empleo , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox/genética , Neuronas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Elife ; 112022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35324425

RESUMEN

Overarching themes in the terminal differentiation of the enteric nervous system, an autonomously acting unit of animal nervous systems, have so far eluded discovery. We describe here the overall regulatory logic of enteric nervous system differentiation of the nematode Caenorhabditis elegans that resides within the foregut (pharynx) of the worm. A C. elegans homolog of the Drosophila Sine oculis homeobox gene, ceh-34, is expressed in all 14 classes of interconnected pharyngeal neurons from their birth throughout their life time, but in no other neuron type of the entire animal. Constitutive and temporally controlled ceh-34 removal shows that ceh-34 is required to initiate and maintain the neuron type-specific terminal differentiation program of all pharyngeal neuron classes, including their circuit assembly. Through additional genetic loss of function analysis, we show that within each pharyngeal neuron class, ceh-34 cooperates with different homeodomain transcription factors to individuate distinct pharyngeal neuron classes. Our analysis underscores the critical role of homeobox genes in neuronal identity specification and links them to the control of neuronal circuit assembly of the enteric nervous system. Together with the pharyngeal nervous system simplicity as well as its specification by a Sine oculis homolog, our findings invite speculations about the early evolution of nervous systems.


Asunto(s)
Proteínas de Caenorhabditis elegans , Sistema Nervioso Entérico , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Factores de Transcripción , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox , Proteínas de Homeodominio/metabolismo , Faringe , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34415309

RESUMEN

Sex differences in the brain are prevalent throughout the animal kingdom and particularly well appreciated in the nematode Caenorhabditis elegans, where male animals contain a little-studied set of 93 male-specific neurons. To make these neurons amenable for future study, we describe here how a multicolor reporter transgene, NeuroPAL, is capable of visualizing the distinct identities of all male-specific neurons. We used NeuroPAL to visualize and characterize a number of features of the male-specific nervous system. We provide several proofs of concept for using NeuroPAL to identify the sites of expression of gfp-tagged reporter genes and for cellular fate analysis by analyzing the effect of removal of several developmental patterning genes on neuronal identity acquisition. We use NeuroPAL and its intrinsic cohort of more than 40 distinct differentiation markers to show that, even though male-specific neurons are generated throughout all four larval stages, they execute their terminal differentiation program in a coordinated manner in the fourth larval stage. This coordinated wave of differentiation, which we call 'just-in-time' differentiation, couples neuronal maturation programs with the appearance of sexual organs.


Asunto(s)
Caenorhabditis elegans/fisiología , Diferenciación Celular/fisiología , Sistema Nervioso/fisiopatología , Animales , Encéfalo/fisiología , Caenorhabditis elegans/genética , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes Reporteros/genética , Masculino , Neurogénesis/genética , Neuronas/fisiología , Transgenes/genética
4.
J Immunol ; 196(9): 3768-79, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27036912

RESUMEN

Microbial colonization of the infant gastrointestinal tract (GIT) begins at birth, is shaped by the maternal microbiota, and is profoundly altered by antibiotic treatment. Antibiotic treatment of mothers during pregnancy influences colonization of the GIT microbiota of their infants. The role of the GIT microbiota in regulating adaptive immune function against systemic viral infections during infancy remains undefined. We used a mouse model of perinatal antibiotic exposure to examine the effect of GIT microbial dysbiosis on infant CD8(+) T cell-mediated antiviral immunity. Maternal antibiotic treatment/treated (MAT) during pregnancy and lactation resulted in profound alterations in the composition of the GIT microbiota in mothers and infants. Streptococcus spp. dominated the GIT microbiota of MAT mothers, whereas Enterococcus faecalis predominated within the MAT infant GIT. MAT infant mice subsequently exhibited increased and accelerated mortality following vaccinia virus infection. Ag-specific IFN-γ-producing CD8(+) T cells were reduced in sublethally infected MAT infant mice. MAT CD8(+) T cells from uninfected infant mice also demonstrated a reduced capacity to sustain IFN-γ production following in vitro activation. We additionally determined that control infant mice became more susceptible to infection if they were born in an animal facility using stricter standards of hygiene. These data indicate that undisturbed colonization and progression of the GIT microbiota during infancy are necessary to promote robust adaptive antiviral immune responses.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Enterococcus faecalis/fisiología , Microbioma Gastrointestinal , Streptococcus/fisiología , Virus Vaccinia/inmunología , Vaccinia/microbiología , Inmunidad Adaptativa , Animales , Animales Recién Nacidos , Antibacterianos/administración & dosificación , Antibacterianos/efectos adversos , Células Cultivadas , Femenino , Interferón gamma/metabolismo , Exposición Materna/efectos adversos , Ratones , Ratones Endogámicos C57BL , Vaccinia/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA