Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 910, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36801853

RESUMEN

Transcriptional memory, by which cells respond faster to repeated stimuli, is key for cellular adaptation and organism survival. Chromatin organization has been shown to play a role in the faster response of primed cells. However, the contribution of post-transcriptional regulation is not yet explored. Here we perform a genome-wide screen to identify novel factors modulating transcriptional memory in S. cerevisiae in response to galactose. We find that depletion of the nuclear RNA exosome increases GAL1 expression in primed cells. Our work shows that gene-specific differences in intrinsic nuclear surveillance factor association can enhance both gene induction and repression in primed cells. Finally, we show that primed cells present altered levels of RNA degradation machinery and that both nuclear and cytoplasmic mRNA decay modulate transcriptional memory. Our results demonstrate that mRNA post-transcriptional regulation, and not only transcription regulation, should be considered when investigating gene expression memory.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Expresión Génica , Estabilidad del ARN/genética , Transcripción Genética
2.
G3 (Bethesda) ; 7(5): 1511-1524, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28315832

RESUMEN

Meiotic crossover frequencies show wide variation among organisms. But most organisms maintain at least one crossover per homolog pair (obligate crossover). In Saccharomyces cerevisiae, previous studies have shown crossover frequencies are reduced in the mismatch repair related mutant mlh3Δ and enhanced in a meiotic checkpoint mutant pch2Δ by up to twofold at specific chromosomal loci, but both mutants maintain high spore viability. We analyzed meiotic recombination events genome-wide in mlh3Δ, pch2Δ, and mlh3Δ pch2Δ mutants to test the effect of variation in crossover frequency on obligate crossovers. mlh3Δ showed ∼30% genome-wide reduction in crossovers (64 crossovers per meiosis) and loss of the obligate crossover, but nonexchange chromosomes were efficiently segregated. pch2Δ showed ∼50% genome-wide increase in crossover frequency (137 crossovers per meiosis), elevated noncrossovers as well as loss of chromosome size dependent double-strand break formation. Meiotic defects associated with pch2∆ did not cause significant increase in nonexchange chromosome frequency. Crossovers were restored to wild-type frequency in the double mutant mlh3Δ pch2Δ (100 crossovers per meiosis), but obligate crossovers were compromised. Genetic interference was reduced in mlh3Δ, pch2Δ, and mlh3Δ pch2Δ. Triple mutant analysis of mlh3Δ pch2Δ with other resolvase mutants showed that most of the crossovers in mlh3Δ pch2Δ are made through the Mus81-Mms4 pathway. These results are consistent with a requirement for increased crossover frequencies in the absence of genetic interference for obligate crossovers. In conclusion, these data suggest crossover frequencies and the strength of genetic interference in an organism are mutually optimized to ensure obligate crossovers.


Asunto(s)
Intercambio Genético , Meiosis/genética , Saccharomyces cerevisiae/genética , Eliminación de Gen , Proteínas MutL/genética , Proteínas MutL/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Syst Biol ; 11(1): 785, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25634765

RESUMEN

Mechanisms conferring robustness against regulatory variants have been controversial. Previous studies suggested widespread buffering of RNA misexpression on protein levels during translation. We do not find evidence that translational buffering is common. Instead, we find extensive buffering at the level of RNA expression, exerted through negative feedback regulation acting in trans, which reduces the effect of regulatory variants on gene expression. Our approach is based on a novel experimental design in which allelic differential expression in a yeast hybrid strain is compared to allelic differential expression in a pool of its spores. Allelic differential expression in the hybrid is due to cis-regulatory differences only. Instead, in the pool of spores allelic differential expression is not only due to cis-regulatory differences but also due to local trans effects that include negative feedback. We found that buffering through such local trans regulation is widespread, typically compensating for about 15% of cis-regulatory effects on individual genes. Negative feedback is stronger not only for essential genes, indicating its functional relevance, but also for genes with low to middle levels of expression, for which tight regulation matters most. We suggest that negative feedback is one mechanism of Waddington's canalization, facilitating the accumulation of genetic variants that might give selective advantage in different environments.


Asunto(s)
Redes Reguladoras de Genes , Variación Genética , Saccharomyces cerevisiae/genética , Alelos , Mapeo Cromosómico , ADN de Hongos/genética , Bases de Datos Genéticas , Evolución Molecular , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Frecuencia de los Genes , Técnicas de Genotipaje , Modelos Moleculares , Anotación de Secuencia Molecular , Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Especificidad de la Especie
4.
Genetics ; 199(2): 399-412, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25467183

RESUMEN

The segregation of homologous chromosomes during the Meiosis I division requires an obligate crossover per homolog pair (crossover assurance). In Saccharomyces cerevisiae and mammals, Msh4 and Msh5 proteins stabilize Holliday junctions and its progenitors to facilitate crossing over. S. cerevisiae msh4/5 hypomorphs that reduce crossover levels up to twofold at specific loci on chromosomes VII, VIII, and XV without affecting homolog segregation were identified recently. We use the msh4-R676W hypomorph to ask if the obligate crossover is insulated from variation in crossover frequencies, using a S. cerevisiae S288c/YJM789 hybrid to map recombination genome-wide. The msh4-R676W hypomorph made on average 64 crossovers per meiosis compared to 94 made in wild type and 49 in the msh4Δ mutant confirming the defect seen at individual loci on a genome-wide scale. Crossover reductions in msh4-R676W and msh4Δ were significant across chromosomes regardless of size, unlike previous observations made at specific loci. The msh4-R676W hypomorph showed reduced crossover interference. Although crossover reduction in msh4-R676W is modest, 42% of the four viable spore tetrads showed nonexchange chromosomes. These results, along with modeling of crossover distribution, suggest the significant reduction in crossovers across chromosomes and the loss of interference compromises the obligate crossover in the msh4 hypomorph. The high spore viability of the msh4 hypomorph is maintained by efficient segregation of the natural nonexchange chromosomes. Our results suggest that variation in crossover frequencies can compromise the obligate crossover and also support a mechanistic role for interference in obligate crossover formation.


Asunto(s)
Segregación Cromosómica , Cromosomas Fúngicos , Intercambio Genético , Meiosis , Saccharomyces cerevisiae/genética , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Viabilidad Microbiana/genética , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Esporas Fúngicas
5.
Genome Res ; 24(8): 1363-70, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24823668

RESUMEN

The genetic basis of heritable traits has been studied for decades. Although recent mapping efforts have elucidated genetic determinants of transcript levels, mapping of protein abundance has lagged. Here, we analyze levels of 4084 GFP-tagged yeast proteins in the progeny of a cross between a laboratory and a wild strain using flow cytometry and high-content microscopy. The genotype of trans variants contributed little to protein level variation between individual cells but explained >50% of the variance in the population's average protein abundance for half of the GFP fusions tested. To map trans-acting factors responsible, we performed flow sorting and bulk segregant analysis of 25 proteins, finding a median of five protein quantitative trait loci (pQTLs) per GFP fusion. Further, we find that cis-acting variants predominate; the genotype of a gene and its surrounding region had a large effect on protein level six times more frequently than the rest of the genome combined. We present evidence for both shared and independent genetic control of transcript and protein abundance: More than half of the expression QTLs (eQTLs) contribute to changes in protein levels of regulated genes, but several pQTLs do not affect their cognate transcript levels. Allele replacements of genes known to underlie trans eQTL hotspots confirmed the correlation of effects on mRNA and protein levels. This study represents the first genome-scale measurement of genetic contribution to protein levels in single cells and populations, identifies more than a hundred trans pQTLs, and validates the propagation of effects associated with transcript variation to protein abundance.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Mapeo Cromosómico , Evolución Molecular , Expresión Génica , Frecuencia de los Genes , Genotipo , Sitios de Carácter Cuantitativo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Genetics ; 196(3): 853-65, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24374355

RESUMEN

Dissecting the molecular basis of quantitative traits is a significant challenge and is essential for understanding complex diseases. Even in model organisms, precisely determining causative genes and their interactions has remained elusive, due in part to difficulty in narrowing intervals to single genes and in detecting epistasis or linked quantitative trait loci. These difficulties are exacerbated by limitations in experimental design, such as low numbers of analyzed individuals or of polymorphisms between parental genomes. We address these challenges by applying three independent high-throughput approaches for QTL mapping to map the genetic variants underlying 11 phenotypes in two genetically distant Saccharomyces cerevisiae strains, namely (1) individual analysis of >700 meiotic segregants, (2) bulk segregant analysis, and (3) reciprocal hemizygosity scanning, a new genome-wide method that we developed. We reveal differences in the performance of each approach and, by combining them, identify eight polymorphic genes that affect eight different phenotypes: colony shape, flocculation, growth on two nonfermentable carbon sources, and resistance to two drugs, salt, and high temperature. Our results demonstrate the power of individual segregant analysis to dissect QTL and address the underestimated contribution of interactions between variants. We also reveal confounding factors like mutations and aneuploidy in pooled approaches, providing valuable lessons for future designs of complex trait mapping studies.


Asunto(s)
Genómica/métodos , Sitios de Carácter Cuantitativo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Aneuploidia , Mapeo Cromosómico , Variación Genética , Genoma Fúngico , Mutación , Fenotipo
7.
PLoS Genet ; 9(9): e1003803, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24068968

RESUMEN

Unraveling the molecular processes that lead from genotype to phenotype is crucial for the understanding and effective treatment of genetic diseases. Knowledge of the causative genetic defect most often does not enable treatment; therefore, causal intermediates between genotype and phenotype constitute valuable candidates for molecular intervention points that can be therapeutically targeted. Mapping genetic determinants of gene expression levels (also known as expression quantitative trait loci or eQTL studies) is frequently used for this purpose, yet distinguishing causation from correlation remains a significant challenge. Here, we address this challenge using extensive, multi-environment gene expression and fitness profiling of hundreds of genetically diverse yeast strains, in order to identify truly causal intermediate genes that condition fitness in a given environment. Using functional genomics assays, we show that the predictive power of eQTL studies for inferring causal intermediate genes is poor unless performed across multiple environments. Surprisingly, although the effects of genotype on fitness depended strongly on environment, causal intermediates could be most reliably predicted from genetic effects on expression present in all environments. Our results indicate a mechanism explaining this apparent paradox, whereby immediate molecular consequences of genetic variation are shared across environments, and environment-dependent phenotypic effects result from downstream integration of environmental signals. We developed a statistical model to predict causal intermediates that leverages this insight, yielding over 400 transcripts, for the majority of which we experimentally validated their role in conditioning fitness. Our findings have implications for the design and analysis of clinical omics studies aimed at discovering personalized targets for molecular intervention, suggesting that inferring causation in a single cellular context can benefit from molecular profiling in multiple contexts.


Asunto(s)
Expresión Génica , Interacción Gen-Ambiente , Redes y Vías Metabólicas/genética , Sitios de Carácter Cuantitativo/genética , Teorema de Bayes , Ambiente , Genotipo , Humanos , Modelos Estadísticos , Fenotipo , Saccharomyces cerevisiae/genética
8.
G3 (Bethesda) ; 3(8): 1213-24, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23550136

RESUMEN

HeLa is the most widely used model cell line for studying human cellular and molecular biology. To date, no genomic reference for this cell line has been released, and experiments have relied on the human reference genome. Effective design and interpretation of molecular genetic studies performed using HeLa cells require accurate genomic information. Here we present a detailed genomic and transcriptomic characterization of a HeLa cell line. We performed DNA and RNA sequencing of a HeLa Kyoto cell line and analyzed its mutational portfolio and gene expression profile. Segmentation of the genome according to copy number revealed a remarkably high level of aneuploidy and numerous large structural variants at unprecedented resolution. Some of the extensive genomic rearrangements are indicative of catastrophic chromosome shattering, known as chromothripsis. Our analysis of the HeLa gene expression profile revealed that several pathways, including cell cycle and DNA repair, exhibit significantly different expression patterns from those in normal human tissues. Our results provide the first detailed account of genomic variants in the HeLa genome, yielding insight into their impact on gene expression and cellular function as well as their origins. This study underscores the importance of accounting for the strikingly aberrant characteristics of HeLa cells when designing and interpreting experiments, and has implications for the use of HeLa as a model of human biology.


Asunto(s)
Genoma Humano , Alelos , Variaciones en el Número de Copia de ADN , Bases de Datos Genéticas , Frecuencia de los Genes , Genómica , Células HeLa , Humanos , Modelos Biológicos , Mutación , Interferencia de ARN , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Transcriptoma
9.
BMC Genomics ; 14: 90, 2013 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-23394869

RESUMEN

BACKGROUND: The throughput of next-generation sequencing machines has increased dramatically over the last few years; yet the cost and time for library preparation have not changed proportionally, thus representing the main bottleneck for sequencing large numbers of samples. Here we present an economical, high-throughput library preparation method for the Illumina platform, comprising a 96-well based method for DNA isolation for yeast cells, a low-cost DNA shearing alternative, and adapter ligation using heat inactivation of enzymes instead of bead cleanups. RESULTS: Up to 384 whole-genome libraries can be prepared from yeast cells in one week using this method, for less than 15 euros per sample. We demonstrate the robustness of this protocol by sequencing over 1000 yeast genomes at ~30x coverage. The sequence information from 768 yeast segregants derived from two divergent S. cerevisiae strains was used to generate a meiotic recombination map at unprecedented resolution. Comparisons to other datasets indicate a high conservation of recombination at a chromosome-wide scale, but differences at the local scale. Additionally, we detected a high degree of aneuploidy (3.6%) by examining the sequencing coverage in these segregants. Differences in allele frequency allowed us to attribute instances of aneuploidy to gains of chromosomes during meiosis or mitosis, both of which showed a strong tendency to missegregate specific chromosomes. CONCLUSIONS: Here we present a high throughput workflow to sequence genomes of large number of yeast strains at a low price. We have used this workflow to obtain recombination and aneuploidy data from hundreds of segregants, which can serve as a foundation for future studies of linkage, recombination, and chromosomal aberrations in yeast and higher eukaryotes.


Asunto(s)
Técnicas de Genotipaje/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Levaduras/genética , Aneuploidia , Código de Barras del ADN Taxonómico , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Biblioteca de Genes , Recombinación Genética/genética , Levaduras/clasificación
10.
Nucleic Acids Res ; 41(5): e65, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23295673

RESUMEN

The use of alternative poly(A) sites is common and affects the post-transcriptional fate of mRNA, including its stability, subcellular localization and translation. Here, we present a method to identify poly(A) sites in a genome-wide and strand-specific manner. This method, termed 3'T-fill, initially fills in the poly(A) stretch with unlabeled dTTPs, allowing sequencing to start directly after the poly(A) tail into the 3'-untranslated regions (UTR). Our comparative analysis demonstrates that it outperforms existing protocols in quality and throughput and accurately quantifies RNA levels as only one read is produced from each transcript. We use this method to characterize the diversity of polyadenylation in Saccharomyces cerevisiae, showing that alternative RNA molecules are present even in a genetically identical cell population. Finally, we observe that overlap of convergent 3'-UTRs is frequent but sharply limited by coding regions, suggesting factors that restrict compression of the yeast genome.


Asunto(s)
Mapeo Cromosómico , Perfilación de la Expresión Génica , Poliadenilación , ARN de Hongos/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma
11.
Methods Enzymol ; 513: 271-96, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22929774

RESUMEN

Alternative polyadenylation site usage gives rise to variation in 3' ends of transcripts in diverse organisms ranging from yeast to human. Accurate mapping of polyadenylation sites of transcripts is of major biological importance, since the length of the 3'UTR can have a strong influence on transcript stability, localization, and translation. However, reads generated using total mRNA sequencing mostly lack the very 3' end of transcripts. Here, we present a method that allows simultaneous analysis of alternative 3' ends and transcriptome dynamics at high throughput. By using transcripts produced in vitro, the high precision of end mapping during the protocol can be controlled. This method is illustrated here for budding yeast. However, this method can be applied to any natural or artificially polyadenylated RNA.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma Fúngico , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Saccharomycetales/genética , Regiones no Traducidas 3' , Secuencia de Bases , Sitios de Unión , Perfilación de la Expresión Génica/métodos , Biblioteca de Genes , Humanos , Poliadenilación , Reacción en Cadena de la Polimerasa/instrumentación , Reacción en Cadena de la Polimerasa/métodos , ARN de Hongos/genética , ARN Mensajero/genética , Saccharomycetales/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...