RESUMEN
This study investigates the structural intricacies and properties of single-walled nanotubes (SWNT) and double-walled nanotubes (DWNT) composed of hexagonal boron nitride (BN) and carbon (C). Doping with various atoms including light elements (B, N, O) and heavy metals (Fe, Co, Cu) is taken into account. The optimized configurations of SWNT and DWNT, along with dopant positions, are explored, with a focus on DWNT-BN-C. The stability analysis, employing binding energies, affirms the favorable formation of nanotube structures, with DWNT-C emerging as the most stable compound. Quantum stability assessments reveal significant intramolecular charge transfer in specific configurations. Electronic properties, including charge distribution, electronegativity, and electrical conductivity, are examined, showcasing the impact of doping. Energy gap values highlight the diverse electronic characteristics of the nanotubes. PDOS analysis provides insights into the contribution of atoms to molecular orbitals. UV-Vis absorption spectra unravel the optical transitions, showcasing the influence of nanotube size, dopant type, and location. Hydrogen storage capabilities are explored, with suitable adsorption energies indicating favorable hydrogen adsorption. The desorption temperatures for hydrogen release vary across configurations, with notable enhancements in specific doped DWNT-C variants, suggesting potential applications in high-temperature hydrogen release. Overall, this comprehensive investigation provides valuable insights into the structural, electronic, optical, and hydrogen storage properties of BN and C nanotubes, laying the foundation for tailored applications in electronics and energy storage.
RESUMEN
We employed density functional theory calculations to investigate the electronic and optical characteristics of finite GaAs nanoribbons (NRs). Our study encompasses chemical alterations including doping, functionalization, and complete passivation, aimed at tailoring NR properties. The structural stability of these NRs was affirmed by detecting real vibrational frequencies in infrared spectra, indicating dynamical stability. Positive binding energies further corroborated the robust formation of NRs. Analysis of doped GaAs nanoribbons revealed a diverse range of energy gaps (approximately 2.672 to 5.132 eV). The introduction of F atoms through passivation extended the gap to 5.132 eV, while Cu atoms introduced via edge doping reduced it to 2.672 eV. A density of states analysis indicated that As atom orbitals primarily contributed to occupied molecular orbitals, while Ga atom orbitals significantly influenced unoccupied states. This suggested As atoms as electron donors and Ga atoms as electron acceptors in potential interactions. We investigated excited-state electron-hole interactions through various indices, including electron-hole overlap and charge-transfer length. These insights enriched our understanding of these interactions. Notably, UV-Vis absorption spectra exhibited intriguing phenomena. Doping with Te, Cu, W, and Mo induced redshifts, while functionalization induced red/blue shifts in GaAs-34NR spectra. Passivation, functionalization, and doping collectively enhanced electrical conductivity, highlighting the potential for improving material properties. Among the compounds studied, GaAs-34NR-edg-Cu demonstrated the highest electrical conductivity, while GaAs-34NR displayed the lowest. In summary, our comprehensive investigation offers valuable insights into customizing GaAs nanoribbon characteristics, with promising implications for nanoelectronics and optoelectronics applications.