Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38518756

RESUMEN

Ancestral reconstruction is a widely used technique that has been applied to understand the evolutionary history of gain and loss of gene families. Ancestral gene content can be reconstructed via different phylogenetic methods, but many current and previous studies employ Dollo parsimony. We hypothesize that Dollo parsimony is not appropriate for ancestral gene content reconstruction inferences based on sequence homology, as Dollo parsimony is derived from the assumption that a complex character cannot be regained. This premise does not accurately model molecular sequence evolution, in which false orthology can result from sequence convergence or lateral gene transfer. The aim of this study is to test Dollo parsimony's suitability for ancestral gene content reconstruction and to compare its inferences with a maximum likelihood-based approach that allows a gene family to be gained more than once within a tree. We first compared the performance of the two approaches on a series of artificial data sets each of 5,000 genes that were simulated according to a spectrum of evolutionary rates without gene gain or loss, so that inferred deviations from the true gene count would arise only from errors in orthology inference and ancestral reconstruction. Next, we reconstructed protein domain evolution on a phylogeny representing known eukaryotic diversity. We observed that Dollo parsimony produced numerous ancestral gene content overestimations, especially at nodes closer to the root of the tree. These observations led us to the conclusion that, confirming our hypothesis, Dollo parsimony is not an appropriate method for ancestral reconstruction studies based on sequence homology.


Asunto(s)
Evolución Molecular , Filogenia , Funciones de Verosimilitud
2.
Nat Commun ; 15(1): 2469, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503762

RESUMEN

Phylogenetic analyses over the last two decades have united a few small, and previously orphan clades, the nematodermatids, acoels and xenoturbelids, into the phylum Xenacoelomorpha. Some phylogenetic analyses support a sister relationship between Xenacoelomorpha and Ambulacraria (Xenambulacraria), while others suggest that Xenacoelomorpha may be sister to the rest of the Bilateria (Nephrozoa). An understanding of the cell type complements of Xenacoelomorphs is essential to assessing these alternatives as well as to our broader understanding of bilaterian cell type evolution. Employing whole organism single-cell RNA-seq in the marine xenacoelomorph worm Xenoturbella bocki, we show that Xenambulacrarian nerve nets share regulatory features and a peptidergic identity with those found in cnidarians and protostomes and more broadly share muscle and gland cell similarities with other metazoans. Taken together, these data are consistent with broad homologies of animal gland, muscle, and neurons as well as more specific affinities between Xenoturbella and acoel gut and epidermal tissues, consistent with the monophyly of Xenacoelomorpha.


Asunto(s)
Filogenia , Animales
3.
Sci Adv ; 9(31): eadg6034, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37531419

RESUMEN

Pelagic larval stages are widespread across animals, yet it is unclear whether larvae were present in the last common ancestor of animals or whether they evolved multiple times due to common selective pressures. Many marine larvae are at least superficially similar; they are small, swim through the beating of bands of cilia, and sense the environment with an apical organ. To understand these similarities, we have generated single-cell atlases for marine larvae from two animal phyla and have compared their cell types. We found clear similarities among ciliary band cells and between neurons of the apical organ in the two larvae pointing to possible homology of these structures, suggesting a single origin of larvae within Spiralia. We also find several clade-specific innovations in each larva, including distinct myocytes and shell gland cells in the oyster larva. Oyster shell gland cells express many recently evolved genes that have made previous gene age estimates for the origin of trochophore larvae too young.


Asunto(s)
Evolución Biológica , Neuronas , Animales , Larva/fisiología
4.
Syst Biol ; 72(5): 1119-1135, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366056

RESUMEN

Inference of deep phylogenies has almost exclusively used protein rather than DNA sequences based on the perception that protein sequences are less prone to homoplasy and saturation or to issues of compositional heterogeneity than DNA sequences. Here, we analyze a model of codon evolution under an idealized genetic code and demonstrate that those perceptions may be misconceptions. We conduct a simulation study to assess the utility of protein versus DNA sequences for inferring deep phylogenies, with protein-coding data generated under models of heterogeneous substitution processes across sites in the sequence and among lineages on the tree, and then analyzed using nucleotide, amino acid, and codon models. Analysis of DNA sequences under nucleotide-substitution models (possibly with the third codon positions excluded) recovered the correct tree at least as often as analysis of the corresponding protein sequences under modern amino acid models. We also applied the different data-analysis strategies to an empirical dataset to infer the metazoan phylogeny. Our results from both simulated and real data suggest that DNA sequences may be as useful as proteins for inferring deep phylogenies and should not be excluded from such analyses. Analysis of DNA data under nucleotide models has a major computational advantage over protein-data analysis, potentially making it feasible to use advanced models that account for among-site and among-lineage heterogeneity in the nucleotide-substitution process in inference of deep phylogenies.


Asunto(s)
Modelos Genéticos , Nucleótidos , Animales , Filogenia , Secuencia de Bases , Codón , Aminoácidos/genética , Evolución Molecular
5.
Cell Biol Int ; 47(8): 1354-1367, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37036275

RESUMEN

The tiger flatworm Prostheceraeus crozieri (Polycladida) develops via an eight-lobed, and three-eyed planktonic Müller's larva. This larva has an apical organ, ultrastructural details of which remain elusive due to a scarcity of studies. The evolution and possible homology of the polyclad larva with other spiralian larvae is still controversial. Here, we provide ultrastructural data and three-dimensional reconstructions of the apical organ of P. crozieri. The apical organ consists of an apical tuft complex and a dorso-apical tuft complex. The apical tuft complex features a central tuft of five long cilia, which emerge from four or five individual cells that are themselves encircled by two anchor cells. The necks of six multibranched gland cells are sandwiched between ciliated tuft cell bodies and anchor cells. The proximal parts of the ciliated cell bodies are in contact with the lateral brain neuropil via gap junctions. Located dorsally of the apical tuft complex, the dorso-apical tuft complex is characterized by several long cilia of sensory neurons, these emerge from an epidermal lumen and are closely associated with several gland cells that form a crescent apically around the dorsal anchor cell, and laterally touch the brain neuropil. Such ciliated sensory neurons emerging from a ciliated lumen are reminiscent of ampullary cells of mollusc and annelid larvae; a similar cell type can be found in the hoplonemertean decidula larva. We hypothesize that the ampullary-like cells and the tuft-forming sensory cells in the apical organs of these spiralian larvae could be homologous.


Asunto(s)
Platelmintos , Tigres , Animales , Larva , Moluscos/ultraestructura , Cilios
6.
Genome Biol Evol ; 14(9)2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36040059

RESUMEN

Polyclad flatworms are widely thought to be one of the least derived of the flatworm classes and, as such, are well placed to investigate evolutionary and developmental features such as spiral cleavage and larval diversification lost in other platyhelminths. Prostheceraeus crozieri, (formerly Maritigrella crozieri), is an emerging model polyclad flatworm that already has some useful transcriptome data but, to date, no sequenced genome. We have used high molecular weight DNA extraction and long-read PacBio sequencing to assemble the highly repetitive (67.9%) P. crozieri genome (2.07 Gb). We have annotated 43,325 genes, with 89.7% BUSCO completeness. Perhaps reflecting its large genome, introns were considerably larger than other free-living flatworms, but evidence of abundant transposable elements suggests genome expansion has been principally via transposable elements activity. This genome resource will be of great use for future developmental and phylogenomic research.


Asunto(s)
Platelmintos , Animales , Secuencia de Bases , Elementos Transponibles de ADN , Filogenia , Platelmintos/genética , Análisis de Secuencia de ADN
7.
Cell Syst ; 12(8): 810-826.e4, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34146472

RESUMEN

The recent advent of CRISPR and other molecular tools enabled the reconstruction of cell lineages based on induced DNA mutations and promises to solve the ones of more complex organisms. To date, no lineage reconstruction algorithms have been rigorously examined for their performance and robustness across dataset types and number of cells. To benchmark such methods, we decided to organize a DREAM challenge using in vitro experimental intMEMOIR recordings and in silico data for a C. elegans lineage tree of about 1,000 cells and a Mus musculus tree of 10,000 cells. Some of the 22 approaches submitted had excellent performance, but structural features of the trees prevented optimal reconstructions. Using smaller sub-trees as training sets proved to be a good approach for tuning algorithms to reconstruct larger trees. The simulation and reconstruction methods here generated delineate a potential way forward for solving larger cell lineage trees such as in mouse.


Asunto(s)
Benchmarking , Caenorhabditis elegans , Algoritmos , Animales , Caenorhabditis elegans/genética , Linaje de la Célula/genética , Simulación por Computador , Ratones
8.
Nucleic Acids Res ; 49(W1): W80-W85, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33956141

RESUMEN

Recent innovations in genetics and imaging are providing the means to reconstruct cell lineages, either by tracking cell divisions using live microscopy, or by deducing the history of cells using molecular recorders. A cell lineage on its own, however, is simply a description of cell divisions as branching events. A major goal of current research is to integrate this description of cell relationships with information about the spatial distribution and identities of the cells those divisions produce. Visualizing, interpreting and exploring these complex data in an intuitive manner requires the development of new tools. Here we present CeLaVi, a web-based visualization tool that allows users to navigate and interact with a representation of cell lineages, whilst simultaneously visualizing the spatial distribution, identities and properties of cells. CeLaVi's principal functions include the ability to explore and manipulate the cell lineage tree; to visualise the spatial distribution of cell clones at different depths of the tree; to colour cells in the 3D viewer based on lineage relationships; to visualise various cell qualities on the 3D viewer (e.g. gene expression, cell type) and to annotate selected cells/clones. All these capabilities are demonstrated with four different example data sets. CeLaVi is available at http://www.celavi.pro.


Asunto(s)
Linaje de la Célula , Programas Informáticos , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/crecimiento & desarrollo , Ciona intestinalis/citología , Ciona intestinalis/embriología , Crustáceos/citología , Crustáceos/embriología , Gástrula/citología , Expresión Génica , Larva/citología
9.
iScience ; 24(2): 102110, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33659875

RESUMEN

The availability of complete sets of genes from many organisms makes it possible to identify genes unique to (or lost from) certain clades. This information is used to reconstruct phylogenetic trees; identify genes involved in the evolution of clade specific novelties; and for phylostratigraphy-identifying ages of genes in a given species. These investigations rely on accurately predicted orthologs. Here we use simulation to produce sets of orthologs that experience no gains or losses. We show that errors in identifying orthologs increase with higher rates of evolution. We use the predicted sets of orthologs, with errors, to reconstruct phylogenetic trees; to count gains and losses; and for phylostratigraphy. Our simulated data, containing information only from errors in orthology prediction, closely recapitulate findings from empirical data. We suggest published downstream analyses must be informed to a large extent by errors in orthology prediction that mimic expected patterns of gene evolution.

10.
Sci Adv ; 7(12)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33741592

RESUMEN

The bilaterally symmetric animals (Bilateria) are considered to comprise two monophyletic groups, Protostomia (Ecdysozoa and the Lophotrochozoa) and Deuterostomia (Chordata and the Xenambulacraria). Recent molecular phylogenetic studies have not consistently supported deuterostome monophyly. Here, we compare support for Protostomia and Deuterostomia using multiple, independent phylogenomic datasets. As expected, Protostomia is always strongly supported, especially by longer and higher-quality genes. Support for Deuterostomia, however, is always equivocal and barely higher than support for paraphyletic alternatives. Conditions that cause tree reconstruction errors-inadequate models, short internal branches, faster evolving genes, and unequal branch lengths-coincide with support for monophyletic deuterostomes. Simulation experiments show that support for Deuterostomia could be explained by systematic error. The branch between bilaterian and deuterostome common ancestors is, at best, very short, supporting the idea that the bilaterian ancestor may have been deuterostome-like. Our findings have important implications for the understanding of early animal evolution.


Asunto(s)
Evolución Molecular , Invertebrados , Animales , Invertebrados/genética , Filogenia
11.
Curr Biol ; 31(2): R59-R64, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33497629

RESUMEN

The effort to reconstruct the tree of life was revolutionized by the use of sequences of proteins and nucleic acids. Phylogenetic trees are now routinely inferred using hundreds of thousands of amino acid or nucleotide characters. It thus seems surprising that many aspects of the tree of life are still controversial; conflicting results between large scale phylogenomic studies show that errors remain common despite large datasets. These errors often result from systematic biases in the way sequences evolve. While the resulting systematic errors are well understood, it requires careful efforts to reduce their effects.


Asunto(s)
Exactitud de los Datos , Evolución Molecular , Filogenia , Heterogeneidad Genética , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
12.
Sci Adv ; 6(50)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33310849

RESUMEN

The evolutionary relationships of two animal phyla, Ctenophora and Xenacoelomorpha, have proved highly contentious. Ctenophora have been proposed as the most distant relatives of all other animals (Ctenophora-first rather than the traditional Porifera-first). Xenacoelomorpha may be primitively simple relatives of all other bilaterally symmetrical animals (Nephrozoa) or simplified relatives of echinoderms and hemichordates (Xenambulacraria). In both cases, one of the alternative topologies must be a result of errors in tree reconstruction. Here, using empirical data and simulations, we show that the Ctenophora-first and Nephrozoa topologies (but not Porifera-first and Ambulacraria topologies) are strongly supported by analyses affected by systematic errors. Accommodating this finding suggests that empirical studies supporting Ctenophora-first and Nephrozoa trees are likely to be explained by systematic error. This would imply that the alternative Porifera-first and Xenambulacraria topologies, which are supported by analyses designed to minimize systematic error, are the most credible current alternatives.

13.
Nat Rev Genet ; 21(7): 428-444, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32424311

RESUMEN

Knowing phylogenetic relationships among species is fundamental for many studies in biology. An accurate phylogenetic tree underpins our understanding of the major transitions in evolution, such as the emergence of new body plans or metabolism, and is key to inferring the origin of new genes, detecting molecular adaptation, understanding morphological character evolution and reconstructing demographic changes in recently diverged species. Although data are ever more plentiful and powerful analysis methods are available, there remain many challenges to reliable tree building. Here, we discuss the major steps of phylogenetic analysis, including identification of orthologous genes or proteins, multiple sequence alignment, and choice of substitution models and inference methodologies. Understanding the different sources of errors and the strategies to mitigate them is essential for assembling an accurate tree of life.


Asunto(s)
Genoma , Genómica , Modelos Genéticos , Filogenia , Animales , Biología Computacional/métodos , Cruzamientos Genéticos , Bases de Datos Genéticas , Evolución Molecular , Heterogeneidad Genética , Genómica/métodos , Humanos
14.
Sci Rep ; 9(1): 19477, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31863008

RESUMEN

In some eukaryotes, a 'hidden break' has been described in which the 28S ribosomal RNA molecule is cleaved into two subparts. The break is common in protostome animals (arthropods, molluscs, annelids etc.), but a break has also been reported in some vertebrates and non-metazoan eukaryotes. We present a new computational approach to determine the presence of the hidden break in 28S rRNAs using mapping of RNA-Seq data. We find a homologous break is present across protostomes although it has been lost in a small number of taxa. We show that rare breaks in vertebrate 28S rRNAs are not homologous to the protostome break. A break is found in just 4 out of 331 species of non-animal eukaryotes studied and, in three of these, the break is located in the same position as the protostome break suggesting a striking instance of convergent evolution. RNA Integrity Numbers (RIN) rely on intact 28S rRNA and will be consistently underestimated in the great majority of animal species with a break.


Asunto(s)
ARN Ribosómico 28S/genética , ARN Ribosómico/genética , Animales , Bombyx/genética , Eucariontes/genética , Evolución Molecular , Filogenia , ARN Ribosómico 5.8S/genética
15.
Elife ; 82019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31635694

RESUMEN

Animals detect light using opsin photopigments. Xenopsin, a recently classified subtype of opsin, challenges our views on opsin and photoreceptor evolution. Originally thought to belong to the Gαi-coupled ciliary opsins, xenopsins are now understood to have diverged from ciliary opsins in pre-bilaterian times, but little is known about the cells that deploy these proteins, or if they form a photopigment and drive phototransduction. We characterized xenopsin in a flatworm, Maritigrella crozieri, and found it expressed in ciliary cells of eyes in the larva, and in extraocular cells around the brain in the adult. These extraocular cells house hundreds of cilia in an intra-cellular vacuole (phaosome). Functional assays in human cells show Maritigrella xenopsin drives phototransduction primarily by coupling to Gαi. These findings highlight similarities between xenopsin and c-opsin and reveal a novel type of opsin-expressing cell that, like jawed vertebrate rods, encloses the ciliary membrane within their own plasma membrane.


Asunto(s)
Péptidos/metabolismo , Células Fotorreceptoras de Invertebrados/fisiología , Platelmintos/fisiología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Encéfalo , Membrana Celular/metabolismo , Evolución Molecular , Ojo/citología , Ojo/metabolismo , Subunidades alfa de la Proteína de Unión al GTP , Humanos , Larva , Fototransducción/fisiología , Opsinas/clasificación , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras/citología , Células Fotorreceptoras/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Filogenia , Células Fotorreceptoras Retinianas Bastones/citología , Alineación de Secuencia , Análisis de Secuencia de Proteína
16.
Evodevo ; 10: 12, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31285819

RESUMEN

BACKGROUND: Spiral cleavage is a conserved, early developmental mode found in several phyla of Lophotrochozoans resulting in highly diverse adult body plans. While the cleavage pattern has clearly been broadly conserved, it has also undergone many modifications in various taxa. The precise mechanisms of how different adaptations have altered the ancestral spiral cleavage pattern are an important ongoing evolutionary question, and adequately answering this question requires obtaining a broad developmental knowledge of different spirally cleaving taxa. In flatworms (Platyhelminthes), the spiral cleavage program has been lost or severely modified in most taxa. Polyclad flatworms, however, have retained the pattern up to the 32-cell stage. Here we study early embryogenesis of the cotylean polyclad flatworm Maritigrella crozieri to investigate how closely this species follows the canonical spiral cleavage pattern and to discover any potential deviations from it. RESULTS: Using live imaging recordings and 3D reconstructions of embryos, we give a detailed picture of the events that occur during spiral cleavage in M. crozieri. We suggest, contrary to previous observations, that the four-cell stage is a product of unequal cleavages. We show that that the formation of third and fourth micromere quartets is accompanied by strong blebbing events; blebbing also accompanies the formation of micromere 4d. We find an important deviation from the canonical pattern of cleavages with clear evidence that micromere 4d follows an atypical cleavage pattern, so far exclusively found in polyclad flatworms. CONCLUSIONS: Our findings highlight that early development in M. crozieri deviates in several important aspects from the canonical spiral cleavage pattern. We suggest that some of our observations extend to polyclad flatworms in general as they have been described in both suborders of the Polycladida, the Cotylea and Acotylea.

17.
Genome Res ; 29(7): 1152-1163, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31235654

RESUMEN

Genomes and transcriptomes are now typically sequenced by individual laboratories but analyzing them often remains challenging. One essential step in many analyses lies in identifying orthologs-corresponding genes across multiple species-but this is far from trivial. The Orthologous MAtrix (OMA) database is a leading resource for identifying orthologs among publicly available, complete genomes. Here, we describe the OMA pipeline available as a standalone program for Linux and Mac. When run on a cluster, it has native support for the LSF, SGE, PBS Pro, and Slurm job schedulers and can scale up to thousands of parallel processes. Another key feature of OMA standalone is that users can combine their own data with existing public data by exporting genomes and precomputed alignments from the OMA database, which currently contains over 2100 complete genomes. We compare OMA standalone to other methods in the context of phylogenetic tree inference, by inferring a phylogeny of Lophotrochozoa, a challenging clade within the protostomes. We also discuss other potential applications of OMA standalone, including identifying gene families having undergone duplications/losses in specific clades, and identifying potential drug targets in nonmodel organisms. OMA standalone is available under the permissive open source Mozilla Public License Version 2.0.


Asunto(s)
Bases de Datos Genéticas , Genoma , Invertebrados/clasificación , Programas Informáticos , Transcriptoma , Animales , Invertebrados/genética , Filogenia
18.
Curr Biol ; 29(11): 1818-1826.e6, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31104936

RESUMEN

Xenoturbella and the acoelomorph worms (Xenacoelomorpha) are simple marine animals with controversial affinities. They have been placed as the sister group of all other bilaterian animals (Nephrozoa hypothesis), implying their simplicity is an ancient characteristic [1, 2]; alternatively, they have been linked to the complex Ambulacraria (echinoderms and hemichordates) in a clade called the Xenambulacraria [3-5], suggesting their simplicity evolved by reduction from a complex ancestor. The difficulty resolving this problem implies the phylogenetic signal supporting the correct solution is weak and affected by inadequate modeling, creating a misleading non-phylogenetic signal. The idea that the Nephrozoa hypothesis might be an artifact is prompted by the faster molecular evolutionary rate observed within the Acoelomorpha. Unequal rates of evolution are known to result in the systematic artifact of long branch attraction, which would be predicted to result in an attraction between long-branch acoelomorphs and the outgroup, pulling them toward the root [6]. Other biases inadequately accommodated by the models used can also have strong effects, exacerbated in the context of short internal branches and long terminal branches [7]. We have assembled a large and informative dataset to address this problem. Analyses designed to reduce or to emphasize misleading signals show the Nephrozoa hypothesis is supported under conditions expected to exacerbate errors, and the Xenambulacraria hypothesis is preferred in conditions designed to reduce errors. Our reanalyses of two other recently published datasets [1, 2] produce the same result. We conclude that the Xenacoelomorpha are simplified relatives of the Ambulacraria.


Asunto(s)
Evolución Biológica , Invertebrados/clasificación , Filogenia , Animales , Cordados/clasificación , Equinodermos/clasificación , Invertebrados/anatomía & histología
19.
Curr Biol ; 29(5): R152-R154, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30836082

RESUMEN

A new phylogenomic study places the erstwhile enigmatic chaetognaths, also known as 'arrow worms', within a subgroup of lophotrochozoans, the gnathiferans.


Asunto(s)
Invertebrados , Animales , Filogenia
20.
Elife ; 82019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30688650

RESUMEN

Cell lineages provide the framework for understanding how cell fates are decided during development. Describing cell lineages in most organisms is challenging; even a fruit fly larva has ~50,000 cells and a small mammal has >1 billion cells. Recently, the idea of applying CRISPR to induce mutations during development, to be used as heritable markers for lineage reconstruction, has been proposed by several groups. While an attractive idea, its practical value depends on the accuracy of the cell lineages that can be generated. Here, we use computer simulations to estimate the performance of these approaches under different conditions. We incorporate empirical data on CRISPR-induced mutation frequencies in Drosophila. We show significant impacts from multiple biological and technical parameters - variable cell division rates, skewed mutational outcomes, target dropouts and different sequencing strategies. Our approach reveals the limitations of published CRISPR recorders, and indicates how future implementations can be optimised. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Asunto(s)
Linaje de la Célula , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Animales , Secuencia de Bases , División Celular , Simulación por Computador , Drosophila , Humanos , Modelos Biológicos , Mutación/genética , Tasa de Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA