Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 8(4): 761-776, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38472432

RESUMEN

Shared genetic polymorphisms between populations and species can be ascribed to ancestral variation or to more recent gene flow. Here, we mapped shared polymorphisms in Saccharomyces cerevisiae and its sister species Saccharomyces paradoxus, which diverged 4-6 million years ago. We used a dense map of single-nucleotide diagnostic markers (mean distance 15.6 base pairs) in 1,673 sequenced S. cerevisiae isolates to catalogue 3,852 sequence blocks (≥5 consecutive markers) introgressed from S. paradoxus, with most being recent and clade-specific. The highly diverged wild Chinese S. cerevisiae lineages were depleted of introgressed blocks but retained an excess of individual ancestral polymorphisms derived from incomplete lineage sorting, perhaps due to less dramatic population bottlenecks. In the non-Chinese S. cerevisiae lineages, we inferred major hybridization events and detected cases of overlapping introgressed blocks across distinct clades due to either shared histories or convergent evolution. We experimentally engineered, in otherwise isogenic backgrounds, the introgressed PAD1-FDC1 gene pair that independently arose in two S. cerevisiae clades and revealed that it increases resistance against diverse antifungal drugs. Overall, our study retraces the histories of divergence and secondary contacts across S. cerevisiae and S. paradoxus populations and unveils a functional outcome.


Asunto(s)
Polimorfismo Genético , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Hibridación Genética
2.
Mol Biol Evol ; 36(12): 2861-2877, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31397846

RESUMEN

Mutations, recombinations, and genome duplications may promote genetic diversity and trigger evolutionary processes. However, quantifying these events in diploid hybrid genomes is challenging. Here, we present an integrated experimental and computational workflow to accurately track the mutational landscape of yeast diploid hybrids (MuLoYDH) in terms of single-nucleotide variants, small insertions/deletions, copy-number variants, aneuploidies, and loss-of-heterozygosity. Pairs of haploid Saccharomyces parents were combined to generate ancestor hybrids with phased genomes and varying levels of heterozygosity. These diploids were evolved under different laboratory protocols, in particular mutation accumulation experiments. Variant simulations enabled the efficient integration of competitive and standard mapping of short reads, depending on local levels of heterozygosity. Experimental validations proved the high accuracy and resolution of our computational approach. Finally, applying MuLoYDH to four different diploids revealed striking genetic background effects. Homozygous Saccharomyces cerevisiae showed a ∼4-fold higher mutation rate compared with its closely related species S. paradoxus. Intraspecies hybrids unveiled that a substantial fraction of the genome (∼250 bp per generation) was shaped by loss-of-heterozygosity, a process strongly inhibited in interspecies hybrids by high levels of sequence divergence between homologous chromosomes. In contrast, interspecies hybrids exhibited higher single-nucleotide mutation rates compared with intraspecies hybrids. MuLoYDH provided an unprecedented quantitative insight into the evolutionary processes that mold diploid yeast genomes and can be generalized to other genetic systems.


Asunto(s)
Evolución Molecular , Técnicas Genéticas , Hibridación Genética , Mutación , Polimorfismo Genético , Diploidia , Genoma Fúngico , Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...