Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14822, 2024 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937564

RESUMEN

Milk is a good source of nutrition but is also a source of allergenic proteins such as α-lactalbumin, ß-lactoglobulin (BLG), casein, and immunoglobulins. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas technology has the potential to edit any gene, including milk allergens. Previously, CRISPR/Cas has been successfully employed in dairy cows and goats, but buffaloes remain unexplored for any milk trait. In this study, we utilized the CRISPR/Cas9 system to edit the major milk allergen BLG gene in buffaloes. First, the editing efficiency of designed sgRNAs was tested in fibroblast cells using the T7E assay and Sanger sequencing. The most effective sgRNA was selected to generate clonal lines of BLG-edited cells. Analysis of 15 single-cell clones, through TA cloning and Sanger sequencing, revealed that 7 clones exhibited bi-allelic (-/-) heterozygous, bi-allelic (-/-) homozygous, and mono-allelic (-/+) disruptions in BLG. Bioinformatics prediction analysis confirmed that non-multiple-of-3 edited nucleotide cell clones have frame shifts and early truncation of BLG protein, while multiple-of-3 edited nucleotides resulted in slightly disoriented protein structures. Somatic cell nuclear transfer (SCNT) method was used to produce blastocyst-stage embryos that have similar developmental rates and quality with wild-type embryos. This study demonstrated the successful bi-allelic editing (-/-) of BLG in buffalo cells through CRISPR/Cas, followed by the production of BLG-edited blastocyst stage embryos using SCNT. With CRISPR and SCNT methods described herein, our long-term goal is to generate gene-edited buffaloes with BLG-free milk.


Asunto(s)
Búfalos , Sistemas CRISPR-Cas , Edición Génica , Lactoglobulinas , Animales , Lactoglobulinas/genética , Búfalos/genética , Edición Génica/métodos , ARN Guía de Sistemas CRISPR-Cas/genética , Leche/metabolismo , Fibroblastos/metabolismo
2.
World J Oncol ; 15(2): 149-168, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38545477

RESUMEN

Pigs are playing an increasingly vital role as translational biomedical models for studying human pathophysiology. The annotation of the pig genome was a huge step forward in translatability of pigs as a biomedical model for various human diseases. Similarities between humans and pigs in terms of anatomy, physiology, genetics, and immunology have allowed pigs to become a comprehensive preclinical model for human diseases. With a diverse range, from craniofacial and ophthalmology to reproduction, wound healing, musculoskeletal, and cancer, pigs have provided a seminal understanding of human pathophysiology. This review focuses on the current research using pigs as preclinical models for cancer research and highlights the strengths and opportunities for studying various human cancers.

3.
CRISPR J ; 7(1): 12-28, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38353617

RESUMEN

Disease resistance genes in livestock provide health benefits to animals and opportunities for farmers to meet the growing demand for affordable, high-quality protein. Previously, researchers used gene editing to modify the porcine CD163 gene and demonstrated resistance to a harmful virus that causes porcine reproductive and respiratory syndrome (PRRS). To maximize potential benefits, this disease resistance trait needs to be present in commercially relevant breeding populations for multiplication and distribution of pigs. Toward this goal, a first-of-its-kind, scaled gene editing program was established to introduce a single modified CD163 allele into four genetically diverse, elite porcine lines. This effort produced healthy pigs that resisted PRRS virus infection as determined by macrophage and animal challenges. This founder population will be used for additional disease and trait testing, multiplication, and commercial distribution upon regulatory approval. Applying CRISPR-Cas to eliminate a viral disease represents a major step toward improving animal health.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Síndrome Respiratorio y de la Reproducción Porcina/genética , Sistemas CRISPR-Cas/genética , Resistencia a la Enfermedad/genética , Edición Génica , Ganado
4.
Trends Cancer ; 10(3): 182-184, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290969

RESUMEN

Cancer remains a leading cause of morbidity and mortality, and a paradigm shift is needed to fundamentally revisit drug development efforts. Pigs share close similarities to humans and may serve as an alternative model. Recently, a transgenic 'Oncopig' line has been generated to induce solid tumors with organ specificity, opening the potential of Oncopigs as a platform for developing novel therapeutic regimens.


Asunto(s)
Neoplasias , Animales , Porcinos , Humanos , Modelos Animales de Enfermedad , Animales Modificados Genéticamente , Neoplasias/tratamiento farmacológico , Neoplasias/genética
5.
Reproduction ; 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38215284

RESUMEN

The uterine epithelium is composed of a single layer of hormone responsive polarized epithelial cells that line the lumen and form tubular glands. Endometrial epithelial organoids (EEO) can be generated from uterine epithelia and recapitulate cell composition and hormone responses in vitro. As such, the development of EEO represents a major advance for facilitating mechanistic studies in vitro. However, a major limitation for the use of EEO cultured in basement membrane extract and other hydrogels is the inner location of apical membrane, thereby hindering direct access to the apical surface of the epithelium to study interactions with the embryo or infectious agents such as viruses and bacteria. Here, a straightforward strategy was developed that successfully reverses the polarity of EEO. The result is an apical-out organoid that preserves a distinct apical-basolateral orientation and remains responsive to ovarian steroid hormones. Our investigations highlight the utility of polarity-reversed EEO to study interactions with E. coli and blastocysts. This method of generating apical-out EEO lays the foundation for developing new in vitro functional assays, particularly regarding epithelial interactions with embryos during pregnancy or other luminal constituents in a pathological or diseased state.

6.
Front Genome Ed ; 5: 1256451, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37694158

RESUMEN

Recent advances in CRISPR-Cas genome editing technology have been instrumental in improving the efficiency to produce genetically modified animal models. In this study we have combined four very promising approaches to come up with a highly effective pipeline to produce knock-in mouse and rat models. The four combined methods include: AAV-mediated DNA delivery, single-stranded DNA donor templates, 2-cell embryo modification, and CRISPR-Cas ribonucleoprotein (RNP) electroporation. Using this new combined approach, we were able to produce successfully targeted knock-in rat models containing either Cre or Flp recombinase sequences with knock-in efficiencies over 90%. Furthermore, we were able to produce a knock-in mouse model containing a Cre recombinase targeted insertion with over 50% knock-in efficiency directly comparing efficiencies to other commonly used approaches. Our modified AAV-mediated DNA delivery with 2-cell embryo CRISPR-Cas9 RNP electroporation technique has proven to be highly effective for generating both knock-in mouse and knock-in rat models.

7.
bioRxiv ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37645779

RESUMEN

The uterine epithelium is composed of a single layer of hormone responsive polarized epithelial cells that line the lumen and form tubular glands. Endometrial epithelial organoids (EEO) can be generated from uterine epithelia and recapitulate cell composition and hormone responses in vitro . As such, the development of EEO represents a major advance for facilitating mechanistic studies in vitro . However, a major limitation for the use of EEO cultured in basement membrane extract and other hydrogels is the inner location of apical membrane, thereby hindering direct access to the apical surface of the epithelium to study interactions with the embryo or infectious agents such as viruses and bacteria. Here, a straightforward strategy was developed that successfully reverses the polarity of EEO. The result is an apical-out organoid that preserves a distinct apical-basolateral orientation and remains responsive to ovarian steroid hormones. Our investigations highlight the utility of polarity-reversed EEO to study interactions with E. coli and blastocysts. This method of generating apical-out EEO lays the foundation for developing new in vitro functional assays, particularly regarding epithelial interactions with embryos during pregnancy or other luminal constituents in a pathological or diseased state.

8.
Front Genome Ed ; 5: 1320180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38883409

RESUMEN

Influenza A virus (IAV) infection is initiated by hemagglutinin (HA), a glycoprotein exposed on the virion's lipid envelope that undergoes cleavage by host cell proteases to ensure membrane fusion, entry into the host cells, and completion of the viral cycle. Transmembrane protease serine S1 member 2 (TMPRSS2) is a host transmembrane protease expressed throughout the porcine airway epithelium and is purported to play a major role in the HA cleavage process, thereby influencing viral pathogenicity and tissue tropism. Pigs are natural hosts of IAV and IAV disease causes substantial economic impact on the pork industry worldwide. Previous studies in mice demonstrated that knocking out expression of TMPRSS2 gene was safe and inhibited the spread of IAV after experimental challenge. Therefore, we hypothesized that knockout of TMPRSS2 will prevent IAV infectivity in the swine model. We investigated this hypothesis by comparing pathogenesis of an H1N1pdm09 virus challenge in wildtype (WT) control and in TMPRSS2 knockout (TMPRSS2 -/-) pigs. We demonstrated that TMPRSS2 was expressed in the respiratory tract in WT pigs with and without IAV infection. No differences in nasal viral shedding and lung lavage viral titers were observed between WT and TMPRSS2 -/- pigs. However, the TMPRSS2 -/- pig group had significantly less lung lesions and significant reductions in antiviral and proinflammatory cytokines in the lung. The virus titer results in our direct challenge model contradict prior studies in the murine animal model, but the reduced lung lesions and cytokine profile suggest a possible role for TMPRSS2 in the proinflammatory antiviral response. Further research is warranted to investigate the role of TMPRSS2 in swine IAV infection and disease.

9.
Front Cell Dev Biol ; 10: 1059710, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438568

RESUMEN

Fibroblasts are the common cell type in the connective tissue-the most abundant tissue type in the body. Fibroblasts are widely used for cell culture, for the generation of induced pluripotent stem cells (iPSCs), and as nuclear donors for somatic cell nuclear transfer (SCNT). We report for the first time, the derivation of embryonic fibroblasts (EFs) from porcine embryonic outgrowths, which share similarities in morphology, culture characteristics, molecular markers, and transcriptional profile to fetal fibroblasts (FFs). We demonstrated the efficient use of EFs as nuclear donors in SCNT, for enhanced post-blastocyst development, implantation, and pregnancy outcomes. We further validated EFs as a source for CRISPR/Cas genome editing with overall editing frequencies comparable to that of FFs. Taken together, we established an alternative and efficient pipeline for genome editing and for the generation of genetically engineered animals.

10.
CABI Agric Biosci ; 3(1): 41, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755158

RESUMEN

Genetic modification of animals via selective breeding is the basis for modern agriculture. The current breeding paradigm however has limitations, chief among them is the requirement for the beneficial trait to exist within the population. Desirable alleles in geographically isolated breeds, or breeds selected for a different conformation and commercial application, and more importantly animals from different genera or species cannot be introgressed into the population via selective breeding. Additionally, linkage disequilibrium results in low heritability and necessitates breeding over successive generations to fix a beneficial trait within a population. Given the need to sustainably improve animal production to feed an anticipated 9 billion global population by 2030 against a backdrop of infectious diseases and a looming threat from climate change, there is a pressing need for responsive, precise, and agile breeding strategies. The availability of genome editing tools that allow for the introduction of precise genetic modification at a single nucleotide resolution, while also facilitating large transgene integration in the target population, offers a solution. Concordant with the developments in genomic sequencing approaches, progress among germline editing efforts is expected to reach feverish pace. The current manuscript reviews past and current developments in germline engineering in pigs, and the many advantages they confer for advancing animal agriculture.

11.
BMC Genomics ; 23(1): 181, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35247961

RESUMEN

BACKGROUND: Meiotic recombination is one of the important phenomena contributing to gamete genome diversity. However, except for human and a few model organisms, it is not well studied in livestock, including cattle. RESULTS: To investigate their distributions in the cattle sperm genome, we sequenced 143 single sperms from two Holstein bulls. We mapped meiotic recombination events at high resolution based on phased heterozygous single nucleotide polymorphism (SNP). In the absence of evolutionary selection pressure in fertilization and survival, recombination events in sperm are enriched near distal chromosomal ends, revealing that such a pattern is intrinsic to the molecular mechanism of meiosis. Furthermore, we further validated these findings in single sperms with results derived from sequencing its family trio of diploid genomes and our previous studies of recombination in cattle. CONCLUSIONS: To our knowledge, this is the first large-scale single sperm whole-genome sequencing effort in livestock, which provided useful information for future studies of recombination, genome instability, and male infertility.


Asunto(s)
Meiosis , Recombinación Genética , Animales , Bovinos/genética , Mapeo Cromosómico , Masculino , Meiosis/genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Espermatozoides
12.
Biol Reprod ; 106(4): 629-638, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35094055

RESUMEN

Increased knowledge of reproduction and health of domesticated animals is integral to sustain and improve global competitiveness of U.S. animal agriculture, understand and resolve complex animal and human diseases, and advance fundamental research in sciences that are critical to understanding mechanisms of action and identifying future targets for interventions. Historically, federal and state budgets have dwindled and funding for the United States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA) competitive grants programs remained relatively stagnant from 1985 through 2010. This shortage in critical financial support for basic and applied research, coupled with the underappreciated knowledge of the utility of non-rodent species for biomedical research, hindered funding opportunities for research involving livestock and limited improvements in both animal agriculture and animal and human health. In 2010, the National Institutes of Health and USDA NIFA established an interagency partnership to promote the use of agriculturally important animal species in basic and translational research relevant to both biomedicine and agriculture. This interagency program supported 61 grants totaling over $107 million with 23 awards to new or early-stage investigators. This article will review the success of the 9-year Dual Purpose effort and highlight opportunities for utilizing domesticated agricultural animals in research.


Asunto(s)
Agricultura , Animales Domésticos , Animales , Ganado , National Institutes of Health (U.S.) , Estados Unidos , United States Department of Agriculture
13.
Adv Anat Embryol Cell Biol ; 234: 21-40, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34694476

RESUMEN

The preimplantation mammalian embryo is a simplistic, self-contained, and a superior model for investigating the inherent complexities of cell fate decision mechanisms. All mammals begin their humble journey from a single-cell fertilized zygote contained within a proteinaceous coat called the zona pellucida. The zygote embarks on a series of well-orchestrated events, beginning with the activation of embryonic genome, transition from meiotic to mitotic divisions, spatial organization of the cells, timely differentiation into committed trophectoderm (TE) and primitive endoderm (PrE), and ultimately escape from zona pellucida for implantation into the uterus. The entire development of preimplantation embryo can be studied in vitro using a minimalistic and defined culture system. The ease of culture along with the ability to manipulate gene expression and image the embryos makes them an ideal model system for investigation into the first two of several cell fate decisions made by the embryo that result in a pluripotent epiblast (EPI) and differentiated TE and PrE lineages. This chapter reviews our latest knowledge of preimplantation embryo development, setting the stage for understanding placental development in subsequent chapters in this Book.


Asunto(s)
Blastocisto , Placenta , Animales , Blastocisto/metabolismo , Diferenciación Celular/fisiología , Implantación del Embrión/fisiología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Endodermo , Femenino , Mamíferos , Embarazo
14.
Stem Cell Reports ; 16(1): 212-223, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33338433

RESUMEN

Most of our current knowledge regarding early lineage specification and embryo-derived stem cells comes from studies in rodent models. However, key gaps remain in our understanding of these developmental processes from nonrodent species. Here, we report the detailed characterization of pig extraembryonic endoderm (pXEN) cells, which can be reliably and reproducibly generated from primitive endoderm (PrE) of blastocyst. Highly expandable pXEN cells express canonical PrE markers and transcriptionally resemble rodent XENs. The pXEN cells contribute both to extraembryonic tissues including visceral yolk sac as well as embryonic gut when injected into host blastocysts, and generate live offspring when used as a nuclear donor in somatic cell nuclear transfer (SCNT). The pXEN cell lines provide a novel model for studying lineage segregation, as well as a source for genome editing in livestock.


Asunto(s)
Embrión de Mamíferos/citología , Endodermo/citología , Animales , Blastocisto/citología , Blastocisto/metabolismo , Sistemas CRISPR-Cas/genética , Linaje de la Célula , Quimera , Cadena alfa 1 del Colágeno Tipo I/genética , Embrión de Mamíferos/metabolismo , Endodermo/metabolismo , Edición Génica , Ratones , Porcinos
15.
CRISPR J ; 3(6): 523-534, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33252243

RESUMEN

Selective breeding and genetic modification have been the cornerstone of animal agriculture. However, the current strategy of breeding animals over multiple generations to introgress novel alleles is not practical in addressing global challenges such as climate change, pandemics, and the predicted need to feed a population of 9 billion by 2050. Consequently, genome editing in zygotes to allow for seamless introgression of novel alleles is required, especially in cattle with long generation intervals. We report for the first time the use of CRISPR-Cas genome editors to introduce novel PRNP allelic variants that have been shown to provide resilience towards human prion pandemics. From one round of embryo injections, we have established six pregnancies and birth of seven edited offspring, with two founders showing >90% targeted homology-directed repair modifications. This study lays out the framework for in vitro optimization, unbiased deep-sequencing to identify editing outcomes, and generation of high frequency homology-directed repair-edited calves.


Asunto(s)
Edición Génica/métodos , Ingeniería Genética/métodos , Selección Artificial/genética , Alelos , Animales , Sistemas CRISPR-Cas/genética , Bovinos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Embrión de Mamíferos , Genómica/métodos , Cigoto/metabolismo
16.
Proc Natl Acad Sci U S A ; 117(39): 24195-24204, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32929012

RESUMEN

Spermatogonial stem cell transplantation (SSCT) is an experimental technique for transfer of germline between donor and recipient males that could be used as a tool for biomedical research, preservation of endangered species, and dissemination of desirable genetics in food animal populations. To fully realize these potentials, recipient males must be devoid of endogenous germline but possess normal testicular architecture and somatic cell function capable of supporting allogeneic donor stem cell engraftment and regeneration of spermatogenesis. Here we show that male mice, pigs, goats, and cattle harboring knockout alleles of the NANOS2 gene generated by CRISPR-Cas9 editing have testes that are germline ablated but otherwise structurally normal. In adult pigs and goats, SSCT with allogeneic donor stem cells led to sustained donor-derived spermatogenesis. With prepubertal mice, allogeneic SSCT resulted in attainment of natural fertility. Collectively, these advancements represent a major step toward realizing the enormous potential of surrogate sires as a tool for dissemination and regeneration of germplasm in all mammalian species.


Asunto(s)
Células Madre Germinales Adultas/trasplante , Proteínas de Unión al ARN/fisiología , Espermatogénesis , Animales , Bovinos , Femenino , Cabras , Masculino , Ratones , Ratones Noqueados , Porcinos , Testículo/anatomía & histología , Testículo/fisiología , Trasplante Homólogo
17.
Front Genet ; 10: 327, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156693

RESUMEN

In 2008, a consortium led by the Agricultural Research Service (ARS) and the National Institute for Food and Agriculture (NIFA) published the "Blueprint for USDA Efforts in Agricultural Animal Genomics 2008-2017," which served as a guiding document for research and funding in animal genomics. In the decade that followed, many of the goals set forth in the blueprint were accomplished. However, several other goals require further research. In addition, new topics not covered in the original blueprint, which are the result of emerging technologies, require exploration. To develop a new, updated blueprint, ARS and NIFA, along with scientists in the animal genomics field, convened a workshop titled "Genome to Phenome: A USDA Blueprint for Improving Animal Production" in November 2017, and these discussions were used to develop new goals for the next decade. Like the previous blueprint, these goals are grouped into the broad categories "Science to Practice," "Discovery Science," and "Infrastructure." New goals for characterizing the microbiome, enhancing the use of gene editing and other biotechnologies, and preserving genetic diversity are included in the new blueprint, along with updated goals within many genome research topics described in the previous blueprint. The updated blueprint that follows describes the vision, current state of the art, the research needed to advance the field, expected deliverables, and partnerships needed for each animal genomics research topic. Accomplishment of the goals described in the blueprint will significantly increase the ability to meet the demands for animal products by an increasing world population within the next decade.

18.
Biol Reprod ; 100(1): 208-216, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30085007

RESUMEN

Placental hypoxia can stimulate oxidative stress and mitochondrial dysfunction reducing placental efficiency and inducing fetal growth restriction (FGR). We hypothesized that chronic hypoxia inhibits mitochondrial function in the placenta as an underlying cause of cellular mechanisms contributing to FGR. Pregnant guinea pigs were exposed to either normoxia (NMX) or hypoxia (HPX; 10.5% O2) at 25 day gestation until term (65 day). Guinea pigs were anesthetized, and fetuses and placentas were excised at either mid (40 day) or late gestation (64 day), weighed, and placental tissue stored at -80°C until assayed. Mitochondrial DNA content, protein expression of respiratory Complexes I-V, and nitration and activity rates of Complexes I and IV were measured in NMX and HPX male (N = 6 in each treatment) and female (N = 6 in each treatment) placentas. Mitochondrial density was not altered by HPX in either mid- or late-term placentas. In mid gestation, HPX slightly increased expression of Complexes I-III and V in male placentas only, but had no effect on either Complex I or IV activity rates or nitrotyrosine expression. In late gestation, HPX significantly decreased CI/CIV activity rates and increased CI/CIV nitration in male but not female placentas exhibiting a sexual dimorphism. Complex I-V expression was reduced from mid to late gestation in both male and female placentas regardless of treatment. We conclude that chronic HPX decreases mitochondrial function by inhibiting Complex I/IV activity via increased peroxynitrite in a sex-related manner. Further, there may be a progressive decrease in energy metabolism of placental cell types with gestation that increases the vulnerability of placental function to intrauterine stress.


Asunto(s)
Hipoxia/fisiopatología , Mitocondrias/fisiología , Placenta/fisiopatología , Efectos Tardíos de la Exposición Prenatal , Caracteres Sexuales , Animales , ADN Mitocondrial/metabolismo , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Retardo del Crecimiento Fetal/fisiopatología , Hipoxia Fetal/genética , Hipoxia Fetal/metabolismo , Hipoxia Fetal/patología , Hipoxia Fetal/fisiopatología , Peso Fetal/fisiología , Hipoxia/metabolismo , Masculino , Tamaño de los Órganos , Estrés Oxidativo/fisiología , Placenta/metabolismo , Placenta/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/fisiopatología
19.
Sci Rep ; 8(1): 3582, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29483633

RESUMEN

The domestic pig is an attractive model for biomedical research because of similarities in anatomy and physiology to humans. However, key gaps remain in our understanding of the role of developmental genes in pig, limiting its full potential. In this publication, the role of NEUROGENIN 3 (NGN3), a transcription factor involved in endocrine pancreas development has been investigated by CRISPR/Cas9 gene ablation. Precomplexed Cas9 ribonucleoproteins targeting NGN3 were injected into in vivo derived porcine embryos, and transferred into surrogate females. On day 60 of pregnancy, nine fetuses were collected for genotypic and phenotypic analysis. One of the piglets was identified as an in-frame biallelic knockout (Δ2/Δ2), which showed a loss of putative NGN3-downstream target genes: NEUROD1 and PAX4, as well as insulin, glucagon, somatostatin and pancreatic polypeptide-Y. Fibroblasts from this fetus were used in somatic cell nuclear transfer to generate clonal animals to qualify the effect of mutation on embryonic lethality. Three live piglets were born, received colostrum and suckled normally, but experienced extreme weight loss over a 24 to 36-hour period requiring humane euthanasia. Expression of pancreatic endocrine hormones: insulin, glucagon, and somatostatin were lost. The data support a critical role of NGN3 in porcine endocrine pancreas development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteína 9 Asociada a CRISPR/genética , Células Endocrinas/metabolismo , Islotes Pancreáticos/crecimiento & desarrollo , Mutación , Proteínas del Tejido Nervioso/genética , Porcinos/embriología , Porcinos/genética , Animales , Femenino , Expresión Génica , Técnicas de Inactivación de Genes , Genotipo , Glucagón/metabolismo , Insulina/metabolismo , Factores de Transcripción Paired Box/genética , Embarazo , Somatostatina/metabolismo
20.
DNA Res ; 25(2): 183-194, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29186399

RESUMEN

PRDM9 contributes to hybrid sterility and species evolution. However, its role is to be confirmed in cattle, a major domesticated livestock species. We previously found an association near PRDM9 with cattle recombination features, but the causative variants are still unknown. Using millions of genotyped cattle with pedigree information, we characterized five PRDM9 alleles and generated allele-specific recombination maps. By examining allele-specific recombination patterns, we observed the impact of PRDM9 on global distribution of recombination, especially in the two ends of chromosomes. We also showed strong associations between recombination hotspot regions and functional mutations within PRDM9 zinc finger domain. More importantly, we found one allele of PRDM9 to be very different from others in both protein composition and recombination landscape, indicating the causative role of this allele on the association between PRDM9 and cattle recombination. When comparing recombination maps from sperm and pedigree data, we observed similar genome-wide recombination patterns, validating the quality of pedigree-based results. Collectively, these evidence supported PRDM9 alleles as causal variants for the reported association with cattle recombination. Our study comprehensively surveyed the bovine PRDM9 alleles, generated allele-specific recombination maps, and expanded our understanding of the role of PRDM9 on genome distribution of recombination.


Asunto(s)
Alelos , N-Metiltransferasa de Histona-Lisina/genética , Recombinación Genética , Espermatozoides/metabolismo , Animales , Bovinos , Genómica , N-Metiltransferasa de Histona-Lisina/metabolismo , Masculino , Meiosis , Linaje , Análisis de Secuencia de ADN , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...