Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8501, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38151585

RESUMEN

DNA polymerase (DNAP) can correct errors in DNA during replication by proofreading, a process critical for cell viability. However, the mechanism by which an erroneously incorporated base translocates from the polymerase to the exonuclease site and the corrected DNA terminus returns has remained elusive. Here, we present an ensemble of nine high-resolution structures representing human mitochondrial DNA polymerase Gamma, Polγ, captured during consecutive proofreading steps. The structures reveal key events, including mismatched base recognition, its dissociation from the polymerase site, forward translocation of DNAP, alterations in DNA trajectory, repositioning and refolding of elements for primer separation, DNAP backtracking, and displacement of the mismatched base into the exonuclease site. Altogether, our findings suggest a conserved 'bolt-action' mechanism of proofreading based on iterative cycles of DNAP translocation without dissociation from the DNA, facilitating primer transfer between catalytic sites. Functional assays and mutagenesis corroborate this mechanism, connecting pathogenic mutations to crucial structural elements in proofreading steps.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN , Humanos , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/genética , ADN/química , Exonucleasas/metabolismo
2.
Nat Genet ; 55(10): 1632-1639, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37723262

RESUMEN

Uniparental inheritance of mitochondrial DNA (mtDNA) is an evolutionary trait found in nearly all eukaryotes. In many species, including humans, the sperm mitochondria are introduced to the oocyte during fertilization1,2. The mechanisms hypothesized to prevent paternal mtDNA transmission include ubiquitination of the sperm mitochondria and mitophagy3,4. However, the causative mechanisms of paternal mtDNA elimination have not been defined5,6. We found that mitochondria in human spermatozoa are devoid of intact mtDNA and lack mitochondrial transcription factor A (TFAM)-the major nucleoid protein required to protect, maintain and transcribe mtDNA. During spermatogenesis, sperm cells express an isoform of TFAM, which retains the mitochondrial presequence, ordinarily removed upon mitochondrial import. Phosphorylation of this presequence prevents mitochondrial import and directs TFAM to the spermatozoon nucleus. TFAM relocalization from the mitochondria of spermatogonia to the spermatozoa nucleus directly correlates with the elimination of mtDNA, thereby explaining maternal inheritance in this species.


Asunto(s)
ADN Mitocondrial , Herencia Materna , Humanos , Masculino , ADN Mitocondrial/genética , Herencia Materna/genética , Semen/metabolismo , Mitocondrias/genética , Espermatozoides/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(41): e2207303119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191226

RESUMEN

In live cells, phase separation is thought to organize macromolecules into membraneless structures known as biomolecular condensates. Here, we reconstituted transcription in condensates from purified mitochondrial components using optimized in vitro reaction conditions to probe the structure-function relationships of biomolecular condensates. We find that the core components of the mt-transcription machinery form multiphasic, viscoelastic condensates in vitro. Strikingly, the rates of condensate-mediated transcription are substantially lower than in solution. The condensate-mediated decrease in transcriptional rates is associated with the formation of vesicle-like structures that are driven by the production and accumulation of RNA during transcription. The generation of RNA alters the global phase behavior and organization of transcription components within condensates. Coarse-grained simulations of mesoscale structures at equilibrium show that the components stably assemble into multiphasic condensates and that the vesicles formed in vitro are the result of dynamical arrest. Overall, our findings illustrate the complex phase behavior of transcribing, multicomponent condensates, and they highlight the intimate, bidirectional interplay of structure and function in transcriptional condensates.


Asunto(s)
Cuerpos Nucleares , Orgánulos , Mitocondrias/genética , Orgánulos/metabolismo , ARN/química , Relación Estructura-Actividad
4.
Nucleic Acids Res ; 50(5): 2765-2781, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35191499

RESUMEN

Recognition of mammalian mitochondrial promoters requires the concerted action of mitochondrial RNA polymerase (mtRNAP) and transcription initiation factors TFAM and TFB2M. In this work, we found that transcript slippage results in heterogeneity of the human mitochondrial transcripts in vivo and in vitro. This allowed us to correctly interpret the RNAseq data, identify the bona fide transcription start sites (TSS), and assign mitochondrial promoters for > 50% of mammalian species and some other vertebrates. The divergent structure of the mammalian promoters reveals previously unappreciated aspects of mtDNA evolution. The correct assignment of TSS also enabled us to establish the precise register of the DNA in the initiation complex and permitted investigation of the sequence-specific protein-DNA interactions. We determined the molecular basis of promoter recognition by mtRNAP and TFB2M, which cooperatively recognize bases near TSS in a species-specific manner. Our findings reveal a role of mitochondrial transcription machinery in mitonuclear coevolution and speciation.


Asunto(s)
Mitocondrias/genética , Transcripción Genética , Animales , ADN Mitocondrial/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción
5.
EMBO J ; 40(19): e107988, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34423452

RESUMEN

The intricate process of human mtDNA replication requires the coordinated action of both transcription and replication machineries. Transcription and replication events at the lagging strand of mtDNA prompt the formation of a stem-loop structure (OriL) and the synthesis of a ∼25 nt RNA primer by mitochondrial RNA polymerase (mtRNAP). The mechanisms by which mtRNAP recognizes OriL, initiates transcription, and transfers the primer to the replisome are poorly understood. We found that transcription initiation at OriL involves slippage of the nascent transcript. The transcript slippage is essential for initiation complex stability and its ability to translocate the mitochondrial DNA polymerase gamma, PolG, which pre-binds to OriL, downstream of the replication origin thus allowing for the primer synthesis. Our data suggest the primosome assembly at OriL-a complex of mtRNAP and PolG-can efficiently generate the primer, transfer it to the replisome, and protect it from degradation by mitochondrial endonucleases.


Asunto(s)
Replicación del ADN , ADN Mitocondrial , Mitocondrias/genética , Origen de Réplica , Iniciación de la Transcripción Genética , Secuencia de Bases , ADN Mitocondrial/química , ADN Mitocondrial/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Conformación Molecular , Conformación de Ácido Nucleico , ARN/química , ARN/genética , Relación Estructura-Actividad
6.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876744

RESUMEN

Stabilization of messenger RNA is an important step in posttranscriptional gene regulation. In the nucleus and cytoplasm of eukaryotic cells it is generally achieved by 5' capping and 3' polyadenylation, whereas additional mechanisms exist in bacteria and organelles. The mitochondrial mRNAs in the yeast Saccharomyces cerevisiae comprise a dodecamer sequence element that confers RNA stability and 3'-end processing via an unknown mechanism. Here, we isolated the protein that binds the dodecamer and identified it as Rmd9, a factor that is known to stabilize yeast mitochondrial RNA. We show that Rmd9 associates with mRNA around dodecamer elements in vivo and that recombinant Rmd9 specifically binds the element in vitro. The crystal structure of Rmd9 bound to its dodecamer target reveals that Rmd9 belongs to the family of pentatricopeptide (PPR) proteins and uses a previously unobserved mode of specific RNA recognition. Rmd9 protects RNA from degradation by the mitochondrial 3'-exoribonuclease complex mtEXO in vitro, indicating that recognition and binding of the dodecamer element by Rmd9 confers stability to yeast mitochondrial mRNAs.


Asunto(s)
Proteínas de la Membrana/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regiones no Traducidas 3' , Genes Mitocondriales , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Motivos de Nucleótidos , Unión Proteica , Dominios Proteicos , ARN Mensajero/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
Methods Mol Biol ; 2192: 35-41, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33230763

RESUMEN

In vitro assay based on a reconstituted mitochondrial transcription system serves as a method of choice to probe the functional importance of proteins and their structural motifs. Here we describe protocols for transcription assays designed to probe activity of the human mitochondrial RNA polymerase and the transcription initiation complex using RNA-DNA scaffold and synthetic promoter templates.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Mitocondrias/metabolismo , Transcripción Genética , ADN Mitocondrial/química , ADN Mitocondrial/genética , Proteínas de Unión al ADN/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Técnicas In Vitro , Metiltransferasas/química , Proteínas Mitocondriales/química , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/química
10.
J Biol Chem ; 294(18): 7528-7536, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30910813

RESUMEN

The genes in mitochondrial DNA code for essential subunits of the respiratory chain complexes. In yeast, expression of mitochondrial genes is controlled by a group of gene-specific translational activators encoded in the nucleus. These factors appear to be part of a regulatory system that enables concerted expression of the necessary genes from both nuclear and mitochondrial genomes to produce functional respiratory complexes. Many of the translational activators are believed to act on the 5'-untranslated regions of target mRNAs, but the molecular mechanisms involved in this regulation remain obscure. In this study, we used a combination of in vivo and in vitro analyses to characterize the interactions of one of these translational activators, the pentatricopeptide repeat protein Pet111p, with its presumed target, COX2 mRNA, which encodes subunit II of cytochrome c oxidase. Using photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation analysis, we found that Pet111p binds directly and specifically to a 5'-end proximal region of the COX2 transcript. Further, we applied in vitro RNase footprinting and mapped two binding targets of the protein, of which one is located in the 5'-untranslated leader and the other is within the coding sequence. Combined with the available genetic data, these results suggest a plausible mechanism of translational activation, in which binding of Pet111p may prevent inhibitory secondary structures from forming in the translation initiation region, thus rendering the mRNA available for interaction with the ribosome.


Asunto(s)
Ciclooxigenasa 2/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Factores de Iniciación de Péptidos/genética , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
Elife ; 72018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30526856

RESUMEN

Bacterial and eukaryotic nuclear RNA polymerases (RNAPs) cap RNA with the oxidized and reduced forms of the metabolic effector nicotinamide adenine dinucleotide, NAD+ and NADH, using NAD+ and NADH as non-canonical initiating nucleotides for transcription initiation. Here, we show that mitochondrial RNAPs (mtRNAPs) cap RNA with NAD+ and NADH, and do so more efficiently than nuclear RNAPs. Direct quantitation of NAD+- and NADH-capped RNA demonstrates remarkably high levels of capping in vivo: up to ~60% NAD+ and NADH capping of yeast mitochondrial transcripts, and up to ~15% NAD+ capping of human mitochondrial transcripts. The capping efficiency is determined by promoter sequence at, and upstream of, the transcription start site and, in yeast and human cells, by intracellular NAD+ and NADH levels. Our findings indicate mtRNAPs serve as both sensors and actuators in coupling cellular metabolism to mitochondrial transcriptional outputs, sensing NAD+ and NADH levels and adjusting transcriptional outputs accordingly.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Caperuzas de ARN/genética , ARN Mitocondrial/genética , Transcripción Genética , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Mitocondrias/genética , NAD/genética , Oxidación-Reducción , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Sitio de Iniciación de la Transcripción
12.
Nat Struct Mol Biol ; 25(9): 754-765, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30190598

RESUMEN

The mitochondrial genome is transcribed by a single-subunit DNA-dependent RNA polymerase (mtRNAP) and its auxiliary factors. Structural studies have elucidated how mtRNAP cooperates with its dedicated transcription factors to direct RNA synthesis: initiation factors TFAM and TFB2M assist in promoter-DNA binding and opening by mtRNAP while the elongation factor TEFM increases polymerase processivity to the levels required for synthesis of long polycistronic mtRNA transcripts. Here, we review the emerging body of structural and functional studies of human mitochondrial transcription, provide a molecular movie that can be used for teaching purposes and discuss the open questions to guide future directions of investigation.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Transcripción Genética , Evolución Molecular , Humanos , Mitocondrias/enzimología , Conformación Proteica , Regiones Terminadoras Genéticas , Factores de Elongación Transcripcional/metabolismo
13.
Nucleic Acids Res ; 46(7): 3633-3642, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29897602

RESUMEN

Mitochondrial transcription factor A (TFAM) is essential for the maintenance, expression and transmission of mitochondrial DNA (mtDNA). However, mechanisms for the post-translational regulation of TFAM are poorly understood. Here, we show that TFAM is lysine acetylated within its high-mobility-group box 1, a domain that can also be serine phosphorylated. Using bulk and single-molecule methods, we demonstrate that site-specific phosphoserine and acetyl-lysine mimics of human TFAM regulate its interaction with non-specific DNA through distinct kinetic pathways. We show that higher protein concentrations of both TFAM mimics are required to compact DNA to a similar extent as the wild-type. Compaction is thought to be crucial for regulating mtDNA segregation and expression. Moreover, we reveal that the reduced DNA binding affinity of the acetyl-lysine mimic arises from a lower on-rate, whereas the phosphoserine mimic displays both a decreased on-rate and an increased off-rate. Strikingly, the increased off-rate of the phosphoserine mimic is coupled to a significantly faster diffusion of TFAM on DNA. These findings indicate that acetylation and phosphorylation of TFAM can fine-tune TFAM-DNA binding affinity, to permit the discrete regulation of mtDNA dynamics. Furthermore, our results suggest that phosphorylation could additionally regulate transcription by altering the ability of TFAM to locate promoter sites.


Asunto(s)
ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Proteínas Mitocondriales/genética , Factores de Transcripción/genética , Transcripción Genética , Acetilación , ADN Mitocondrial/química , Proteínas de Unión al ADN/química , Humanos , Cinética , Proteínas Mitocondriales/química , Fosforilación , Regiones Promotoras Genéticas , Factores de Transcripción/química
14.
Cell ; 171(5): 1072-1081.e10, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29149603

RESUMEN

Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/química , Metiltransferasas/química , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Factores de Transcripción/química , Iniciación de la Transcripción Genética , Secuencia de Aminoácidos , Bacteriófago T7/enzimología , Bacteriófago T7/metabolismo , ADN Mitocondrial/química , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación de la Expresión Génica , Humanos , Metiltransferasas/aislamiento & purificación , Metiltransferasas/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/aislamiento & purificación , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Regiones Promotoras Genéticas , Alineación de Secuencia , Factores de Transcripción/aislamiento & purificación , Factores de Transcripción/metabolismo , Transcripción Genética
15.
Cell ; 171(5): 1082-1093.e13, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29033127

RESUMEN

In human mitochondria, transcription termination events at a G-quadruplex region near the replication origin are thought to drive replication of mtDNA by generation of an RNA primer. This process is suppressed by a key regulator of mtDNA-the transcription factor TEFM. We determined the structure of an anti-termination complex in which TEFM is bound to transcribing mtRNAP. The structure reveals interactions of the dimeric pseudonuclease core of TEFM with mobile structural elements in mtRNAP and the nucleic acid components of the elongation complex (EC). Binding of TEFM to the DNA forms a downstream "sliding clamp," providing high processivity to the EC. TEFM also binds near the RNA exit channel to prevent formation of the RNA G-quadruplex structure required for termination and thus synthesis of the replication primer. Our data provide insights into target specificity of TEFM and mechanisms by which it regulates the switch between transcription and replication of mtDNA.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/genética , G-Cuádruplex , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , ADN Mitocondrial/química , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Modelos Moleculares , Elongación de la Transcripción Genética , Factores de Transcripción/química , Terminación de la Transcripción Genética
16.
Nature ; 540(7632): 270-275, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27919073

RESUMEN

Maternally inherited mitochondrial (mt)DNA mutations can cause fatal or severely debilitating syndromes in children, with disease severity dependent on the specific gene mutation and the ratio of mutant to wild-type mtDNA (heteroplasmy) in each cell and tissue. Pathogenic mtDNA mutations are relatively common, with an estimated 778 affected children born each year in the United States. Mitochondrial replacement therapies or techniques (MRT) circumventing mother-to-child mtDNA disease transmission involve replacement of oocyte maternal mtDNA. Here we report MRT outcomes in several families with common mtDNA syndromes. The mother's oocytes were of normal quality and mutation levels correlated with those in existing children. Efficient replacement of oocyte mutant mtDNA was performed by spindle transfer, resulting in embryos containing >99% donor mtDNA. Donor mtDNA was stably maintained in embryonic stem cells (ES cells) derived from most embryos. However, some ES cell lines demonstrated gradual loss of donor mtDNA and reversal to the maternal haplotype. In evaluating donor-to-maternal mtDNA interactions, it seems that compatibility relates to mtDNA replication efficiency rather than to mismatch or oxidative phosphorylation dysfunction. We identify a polymorphism within the conserved sequence box II region of the D-loop as a plausible cause of preferential replication of specific mtDNA haplotypes. In addition, some haplotypes confer proliferative and growth advantages to cells. Hence, we propose a matching paradigm for selecting compatible donor mtDNA for MRT.


Asunto(s)
ADN Mitocondrial/genética , ADN Mitocondrial/uso terapéutico , Herencia Materna/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Terapia de Reemplazo Mitocondrial/métodos , Mutación , Oocitos/metabolismo , Blastocisto/citología , Blastocisto/metabolismo , Línea Celular , Secuencia Conservada/genética , ADN Mitocondrial/biosíntesis , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Haplotipos/genética , Humanos , Masculino , Meiosis , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/prevención & control , Donación de Oocito , Oocitos/citología , Oocitos/patología , Fosforilación Oxidativa , Linaje , Polimorfismo Genético
17.
J Biol Chem ; 291(26): 13432-5, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27226527

RESUMEN

Transcription is a highly regulated process in all domains of life. In human mitochondria, transcription of the circular genome involves only two promoters, called light strand promoter (LSP) and heavy strand promoter (HSP), located in the opposite DNA strands. Initiation of transcription occurs upon sequential assembly of an initiation complex that includes mitochondrial RNA polymerase (mtRNAP) and the initiation factors mitochondrial transcription factor A (TFAM) and TFB2M. It has been recently suggested that the transcription initiation factor TFAM binds to HSP and LSP in opposite directions, implying that the mechanisms of transcription initiation are drastically dissimilar at these promoters. In contrast, we found that binding of TFAM to HSP and the subsequent recruitment of mtRNAP results in a pre-initiation complex that is remarkably similar in topology and properties to that formed at the LSP promoter. Our data suggest that assembly of the pre-initiation complexes on LSP and HSP brings these transcription units in close proximity, providing an opportunity for regulatory proteins to simultaneously control transcription initiation in both mtDNA strands.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Metiltransferasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Regiones Promotoras Genéticas/fisiología , Factores de Transcripción/metabolismo , Iniciación de la Transcripción Genética/fisiología , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Humanos , Metiltransferasas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Factores de Transcripción/genética
18.
Nucleic Acids Res ; 43(7): 3726-35, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25800739

RESUMEN

Regulation of transcription of mtDNA is thought to be crucial for maintenance of redox potential and vitality of the cell but is poorly understood at the molecular level. In this study we mapped the binding sites of the core transcription initiation factors TFAM and TFB2M on human mitochondrial RNA polymerase, and interactions of the latter with promoter DNA. This allowed us to construct a detailed structural model, which displays a remarkable level of interaction between the components of the initiation complex (IC). The architecture of the mitochondrial IC suggests mechanisms of promoter binding and recognition that are distinct from the mechanisms found in RNAPs operating in all domains of life, and illuminates strategies of transcription regulation developed at the very early stages of evolution of gene expression.


Asunto(s)
Mitocondrias/metabolismo , Modelos Biológicos , Transcripción Genética , Humanos
19.
Science ; 347(6221): 548-51, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25635099

RESUMEN

Coordinated replication and expression of the mitochondrial genome is critical for metabolically active cells during various stages of development. However, it is not known whether replication and transcription can occur simultaneously without interfering with each other and whether mitochondrial DNA copy number can be regulated by the transcription machinery. We found that interaction of human transcription elongation factor TEFM with mitochondrial RNA polymerase and nascent transcript prevents the generation of replication primers and increases transcription processivity and thereby serves as a molecular switch between replication and transcription, which appear to be mutually exclusive processes in mitochondria. TEFM may allow mitochondria to increase transcription rates and, as a consequence, respiration and adenosine triphosphate production without the need to replicate mitochondrial DNA, as has been observed during spermatogenesis and the early stages of embryogenesis.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Mitocondriales/metabolismo , ARN/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/química , G-Cuádruplex , Genoma Mitocondrial , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Modelos Genéticos , Modelos Moleculares , ARN/química , ARN Mitocondrial , Terminación de la Transcripción Genética
20.
Nucleic Acids Res ; 42(6): 3884-93, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24393772

RESUMEN

The mitochondrial genome is transcribed by a single-subunit T7 phage-like RNA polymerase (mtRNAP), structurally unrelated to cellular RNAPs. In higher eukaryotes, mtRNAP requires two transcription factors for efficient initiation-TFAM, a major nucleoid protein, and TFB2M, a transient component of mtRNAP catalytic site. The mechanisms behind assembly of the mitochondrial transcription machinery and its regulation are poorly understood. We isolated and identified a previously unknown human mitochondrial transcription intermediate-a pre-initiation complex that includes mtRNAP, TFAM and promoter DNA. Using protein-protein cross-linking, we demonstrate that human TFAM binds to the N-terminal domain of mtRNAP, which results in bending of the promoter DNA around mtRNAP. The subsequent recruitment of TFB2M induces promoter melting and formation of an open initiation complex. Our data indicate that the pre-initiation complex is likely to be an important target for transcription regulation and provide basis for further structural, biochemical and biophysical studies of mitochondrial transcription.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Iniciación de la Transcripción Genética , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , Humanos , Proteínas Mitocondriales/metabolismo , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...